

ENVIRONMENTAL PRODUCT DECLARATION

ISO 14025:2006 and ISO 21930:2017

SOPREMA is pleased to present this Environmental Product Declaration (EPD) for the SOPRASEAL EXPRESS G. This EPD was developed in compliance with ISO 14025 and ISO 21930 and has been verified by Lindita Bushi, Ph.D., Athena Sustainable Materials Institute.

The LCA and the EPD were prepared by Vertima Inc. The EPD includes cradle-to-gate life cycle assessment (LCA) results.

For more information about SOPREMA, visit www.soprema.ca.

For any explanatory material regarding this EPD, please contact the program operator.

1. GENERAL INFORMATION

PCR GENERAL INFORMATION							
Reference PCR	Water-Resistive and Air Barriers ASTM International September 2017 to September 2023 (validity period)						
The PCR review was conducted by:	Thomas P. Gloria (chair) Industrial Ecology Consultants t.gloria@industrial-ecology.com Graham Finch RDH Builiding Science, Inc. Paul H. Shipp USG Corporation						

EPD GENERAL INFORMATION							
Program Operator	ASTM International 100 Barr Harbor Drive, West Co www.astm.org	onshohocken, PA 19428					
Declared Product	SOPRASEAL XPRESS G						
EPD Registration Number	EPD Date of Issue	EPD Period of Validity					
EPD 510	July 20, 2023	July 19, 2028					
EPD Recipient Organization	SOPREMA Inc. 1688, Jean-Berchmans-Michau Drummondville (Quebec) J2C 8 www.soprema.ca/en/						

EPD Type/Scope and D Product specific cradle	eclared Unit -to-gate EPD with declared unit	of 1 m ² of membrane	Year of Reported Manufacturer Primary Data 2021	
Geographical Scope North America	LCA Software OpenLCA v.1.11.0	LCI Databases Ecoinvent 3.9.1 and US LCI	LCIA Methodology TRACI 2.1, CED LHV v1.0 and HHV v.1.01	
This LCA and EPD were	prepared by:	Chantal Lavigne, M.A Sc Vertima Inc. <u>www.vertima.ca</u>		
accordance with ISO 1 ISO 14044:2006 and IS	ere independently verified in 14025:2006, ISO 14040:2006, SO 21930:2017, as well as the CR "Water-Resistive and Air	Lindita Bu Lindita Bushi, Ph.D. Athena Sustainable Ma	. /	

LIMITATIONS

Environmental declarations from different programs (ISO 14025) may not be comparable.[1]

Furthermore, "comparison of construction products using an EPD shall be carried out in the context of the construction works. Consequently, comparisons of the environmental performance of construction products using the EPD shall consider all the relevant information modules over the full life cycle of the products within the construction works. Such a comparison requires scenarios in the construction works context. The provision of ISO 14025:2066, 6.7.2 on comparability shall apply."[2] In sum, "EPDs based on a declared unit shall not be used for comparisons."[3]

The EPDs prepared from this report are not comparable as they are cradle-to-gate EPDs.

[Photo courtesy of SOPREMA]

2. PRODUCT SYSTEM DESCRIPTION

SOPREMA is an international manufacturer specializing in the production of innovative products for waterproofing, insulation, soundproofing and vegetated solutions for the roofing, building envelope and civil engineering sectors. SOPREMA manufactures several types of water barriers and air barriers.

2.1. PRODUCT DESCRIPTION

SOPREASEAL XPRESS G^1 is an air and vapor barrier membrane used on walls. The product is factory-laminated with modified bitumen adhesive on an exterior gypsum board with surfaces free from organic fibres (paper-free).

SOPRASEAL XPRESS G board [Photo courtesy of SOPREMA].

2.2. TECHNICAL DATA

Properties	Standards	SOPRASEAL XPRESS G
Tensile strength, MD/XD	ASTM D5147	13.1 / 9.6 kN/m
Ultimate elongation, MD/XD	ASTM D5147	40 / 25 %
Water vapor permeance	ASTM E96 (Procedure B)	< 2.5 ng/Pa•s•m² (0.04 perm)
Air permeance of membrane	CAN/ULC S741	0.001 L/s•m²

(All values are nominal)

¹ SOPRASEAL XPRESS G is classified under the Construction Specification Institute (CSI) MasterFormat code 07 27 23 Board Product Air Barriers.

EPD

2.3. PROPERTIES OF DECLARED PRODUCT AS DELIVERED

Specifications	SOPRASEAL XPRESS G
Thickness Membrane	
Gypsum board	12.7 mm (1/2 in)
Dimensions	1.2 m x 2.44 m (4 x 8 ft)
Weight	31.6 kg (69.7 lb)
Surface	Tri-laminated woven polyethylene
More details are available at	https://www.soprema.ca/en/products-systems/sopraseal-xpress-g

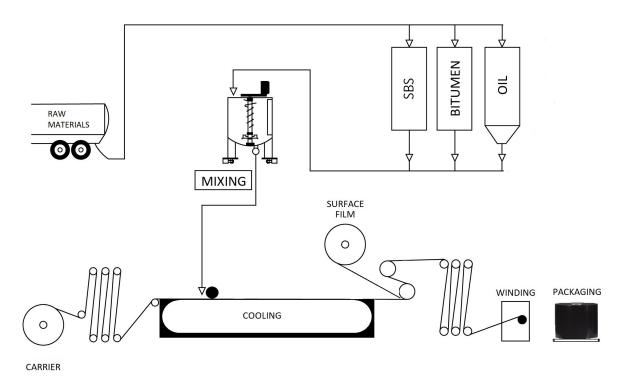
(All values are nominal)

2.4. MATERIAL COMPOSITION

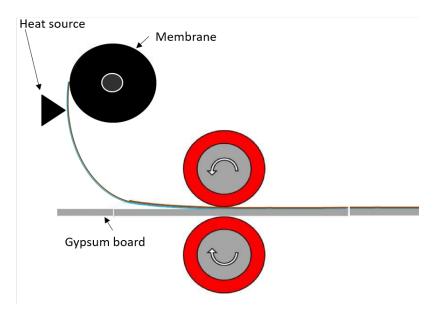
Component/Material	SOPRASEAL XPRESS G
Gypsum board	89.2%
SBS-modified bitumen mixture	9.4%
Tri-laminated woven polyethylene	1.3%
Thermofusible plastic film	0.1%
TOTAL	100.0%

2.5. MANUFACTURING

Manufacturing of the SOPRASEAL XPRESS G is a two-step process: first, the membrane is prepared and then it is laminated to the gypsum board (see figures below).


Manufacturing SBS-modified bitumen air barrier sheet materials involves the deposition of a thin layer of SBS-modified asphalt between a high-strength facer and a polypropylene burn-off film. The SBS-modified asphalt is produced by mixing the appropriate proportions of polymer (SBS), asphalt (also called bitumen), and oil. The product is cooled, wound into rolls, and packaged for shipment to the laminating facility.

The membrane is then heat-laminated on a rigid gypsum substrate.



SOPRASEAL XPRESS G membrane manufacturing process.

SOPRASEAL XPRESS G board laminating process.

2.6. PACKAGING

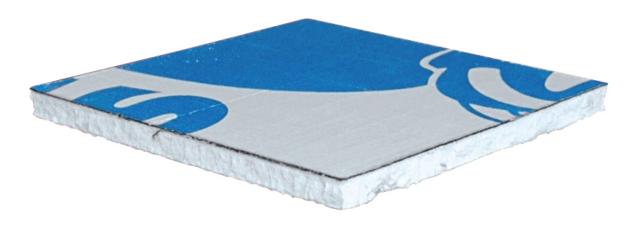
SOPRASEAL XPRESS G boards are stacked on pallets which are covered by a labelled pallet bag or stretch film.

SOPRASEAL XPRESS G Packaging Materials per DU

Packaging	Material	SOPRASEAL XPRESS G
Pallet	Wood (kg/m²)	5.81E-01
Pallet bag, Stretch film	LDPE (kg/m²)	8.58E-03
Pallet labels	Paper (kg/m²)	3.44E-05

2.7. PRODUCT INSTALLATION

SOPRASEAL XPRESS G is a laminated board. The panels are installed horizontally on the mounts and fastened in place with screws around the panel perimeter. Once the membrane is installed on all panel joints, use a hard roller to apply pressure over the entire surface to ensure uniform adhesion to the substrate. Refer to the table below for product gross area and application temperatures.


Specifications	Gross area	Application temperature		
SOPRASEAL XPRESS G	2.93 m ² (21.5 ft ²)	> -35°C (-31°F)		

2.8. REFERENCE SERVICE LIFE AND CONDITION OF USE

For this EPD, the system boundaries encompass a cradle-to-gate scope. Environmental impacts of products in the use phase are excluded from this declaration, as per ASTM PCR Water-Resistive and Air Barriers.[3]

2.9. DISPOSAL

At their end-of-life, SOPREMA membranes are sent to landfill.

[Photo courtesy of SOPREMA]

3. LCA CALCULATION RULES

3.1. DECLARED UNIT

The selected declared unit (DU) for this study is 1 m² of membrane.

Description	SOPRASEAL XPRESS G
Declared unit	1 m²
Mass (kg /m²)	10.82
Product density (kg/m³)	1346.3
Thickness (mm)	12.7

3.2. PRODUCTION AVERAGE

This EPD is specific to one product produced at a facility located in Quebec (Canada). There is no production average.

3.3. SYSTEM BOUNDARIES

According to ASTM's PCR,[3] the LCA modelling system boundaries can be **cradle-to-gate**, i.e., only cover the production life cycle stage as illustrated in **Table 1**. Within this life cycle stage, three (3) modules are considered, namely A-1) Extraction and upstream production, A-2) Transport to factory and A-3) Manufacturing. Construction (A-4; A-5), use (B-1 to B-7) and end-of-life (C-1 to C-4) stages are not included in this EPD. Figure 1 present the process flow diagram for SOPREMA's products. Neither green power nor CO₂ credits are used within the scope of this project.

Table 1: Description of the system boundary life cycle stages and related information modules

PRODUCTIOI STAGE		ON	CONSTRUC- TION PROCESS STAGE		USE STAGE			EN	D-OF-LI	FE STA	.GE				
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4
Extraction and Upstream Production	Transport to Factory	Manufacturing	Transport to site	Installation	Ose	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction / Demolition	Transport to Waste Processing or Disposal	Waste Processing	Disposal of Waste
×	×	×	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Key: X = included; MND = module not declared (excluded)

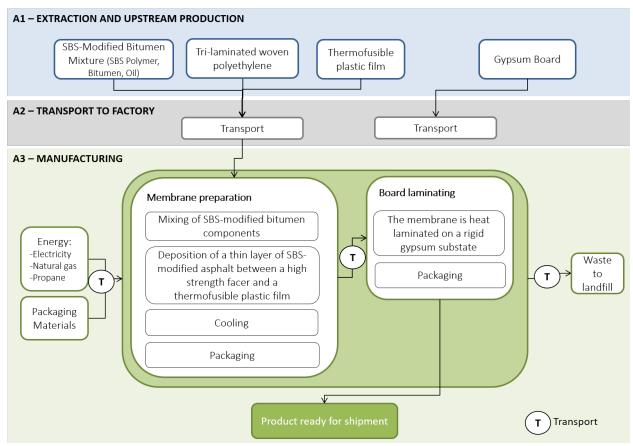


Figure 1: System Boundaries of Cradle-to-Gate LCA of SOPREMA's SOPRASEAL XPRESS G board membrane.

Extraction and upstream production: This module includes the extraction and transformation of raw materials needed to produce the SOPRASEAL XPRESS G laminated board air barrier membrane.

Transport to factory: This module includes the transportation of raw materials to the manufacturing facility located in the province of Quebec (Canada).

Manufacturing: This stage includes electricity, natural gas and propane consumption as well as production waste, which is sent to the local landfill. The manufacturing process does not require water, nor does it emit emissions directly to air, water or soil. The SOPRASEAL XPRESS G membrane is produced at a different facility than the laminated process; hence packaging and transport of the membrane to the laminating facility is considered. It should be noted that both facilities are located in Drummondville, Quebec (Canada). Most of the packaging is reused.

Packaging materials to prepare products for shipment, as well as their transport to the manufacturing facility, is also covered by this stage.

3.4. CUT-OFF CRITERIA

According to ISO 21930:2017, cut-off rules shall not be applied to hide data. All data shall be included. In the case of insufficient data, the cut-off criteria shall be 1% of energy or 1% of total mass input and 1% of environmental impacts of the unit process. The total cut-off input flows per modules shall be a maximum of 5% energy, mass and environmental impacts.

No known flows are deliberately excluded from this EPD.

For this EPD, no data on the construction, maintenance or dismantling of the capital assets, daily transport of employees, office work, business trips or other employee activities were included in the model. The model only takes into account the processes associated with infrastructure that are already included in the ecoinvent unit processes.

3.5. ALLOCATION

Allocation, if required, shall follow the requirements and guidance of ISO 14044:2006, Section 4.3.4.[3,4]

Energy data was provided for the entire manufacturing plants; thus, **mass allocation** was used to assign the share of energy consumed in the factory to the product under study.

Waste processing of the material flows undergoing **recycling processes** are included up to the system boundary of the end-of-waste state.[2] In other words, a **cut-off approach** was used as further processing of the recycled material is part of raw material preparation of another product system (open-loop recycling).

[Photo courtesy of SOPREMA]

3.6. DATA SOURCES AND QUALITY REQUIREMENTS

Data Quality Parameter	Data Quality Discussion
Source of manufacturing data	Manufacturing data was collected from specific manufacturing facilities, which represents 100% of product production. This data included total annual mass and area of products under study: raw materials entering the production of the products under study, losses of materials, transport distance of materials, waste treatment, and product packaging. The data also included electricity consumption for the entire manufacturing facilities as well as total annual production of all products produced.
Source of secondary data	Background data were taken from the ecoinvent 3.9.1 "cut-off" database.[5] Datasets were selected based on their representativeness of the products' composing materials. When appropriate, the dataset's grid mix was changed for the grid mix of the province or country where production takes places. Otherwise, ecoinvent data representative of the global market or "rest-of-the-world" were selected as proxies.
Geographical representativeness	Electricity consumption is based on the electricity mix provided by the electricity supplier. Geographical correlation of the material composing the product and the selected datasets are largely representative of the same area. When this was not possible, datasets representing a larger geographical area were taken.
Temporal representativeness	Primary data represents the 2021 production year. Life cycle inventory datasets from ecoinvent are not always published within the last 10 years; nevertheless, ecoinvent remains a reference LCI database.
Technological representativeness	Primary data, obtained from the manufacturer, is representative of the current technologies and materials used by this company.
Completeness	All relevant process steps were considered and modelled to satisfy the goal and scope. No known flows were cut off.

4. LIFE CYCLE ASSESSMENT RESULTS

4.1. RESULTS TABLES

It should be noted that Life Cycle Impact Assessment (LCIA) results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

Environmental	Indicator	Unit					
TRACI 2.1							
GWP ₁₀₀ -AR5 ⁽¹⁾	Global warming potential	kg CO₂ eq.					
GWP ₁₀₀ -AR4 ⁽²⁾	Global warming potential	kg CO₂ eq.					
AP	Acidification potential	kg SO₂ eq.					
EP	Eutrophication potential	kg N eq					
ODP	Ozone layer depletion potential	kg CFC-11 eq.					
SFP	Smog formation potential	kg O₃ eq					
RDP	Resource depletion potential – fossil fuels	MJ Surplus					
Resource use		-					
PENR-fossil	Primary energy non-renewable, fossil	MJ, HHV					
PENR-nuclear	Primary energy non-renewable, nuclear	MJ, HHV					
PER-biomass	Primary energy renewable, biomass	MJ, HHV					
PER-swhg	Primary energy renewable, solar, wind, hydroelectric and geothermal energy	MJ, HHV					
Material Resou	rces Consumption and Waste	•					
NRMR ⁽³⁾	Non-renewable material resources	kg					
RMR ⁽⁴⁾	Renewable material resources	kg					
NFW ⁽⁵⁾	Net fresh water	L					
HWD ⁽⁶⁾	Hazardous waste disposed	kg					
NHWD ⁽⁷⁾	Non-hazardous waste disposed	kg					

Table Notes - TRACI 2.1

- (1) GWP 100, excludes biogenic CO2 removals and emissions associated with biobased products and packaging; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5).
- (2): GWP 100, excludes biogenic CO2 removals and emissions associated with biobased products and packaging; 100-year time horizon GWP factors are provided by the IPCC 2007 Fourth Assessment Report (AR4).

Table Notes – Material Resource Consumption and Waste

- (3): Calculated based on the product's material input
- $\begin{tabular}{ll} (4): The product does not contain renewable material in its composition. \end{tabular}$
- (5): Represents the use of net fresh water calculated from life cycle inventory results, i.e., water consumption using ReCiPe Midppoint (E) 2016.
- (6): Calculated from life cycle inventory results, based on datasets classified under " treatment and disposal of hazardous waste." The manufacturer does not generate hazardous waste during the manufacturing process.
- (7): Calculated from life cycle inventory results, based on waste that is neither "hazardous" nor "radioactive."

Additional Environmental Indicators						
Resource Use						
RPR _E ⁽¹⁾	Renewable primary resources used as energy carrier (fuel)	MJ, LHV				
RPR _M ⁽²⁾	Renewable primary resources with energy content used as material	MJ, LHV				
RPR_T	Renewable primary resources total	MJ, LHV				
NRPR _E ⁽³⁾	Non-renewable primary resources used as energy carrier (fuel)	MJ, LHV				
NRPR _M ⁽⁴⁾	Non-renewable primary resources with energy content used as material	MJ, LHV				
$NRPR_T$	Non-renewable primary resources total	MJ, LHV				
SM ⁽	Secondary materials	kg				
RSF	Renewable secondary fuels	MJ, LHV				
NRSF	Non-renewable secondary fuels	MJ, LHV				
FW ⁽⁵⁾	Use of net freshwater resources	m³				
Output Flows	s and Waste Categories					
HWD ⁽⁶⁾	Hazardous waste disposed	kg				
NHWD ⁽⁷⁾	Non-hazardous waste disposed	kg				
HLRW ⁽⁸⁾	High-level radioactive waste, conditioned, to final repository	m³				
ILLRW ⁽⁹⁾	Intermediate- and low-level radioactive waste, conditioned to final repository	m³				
CRU	Components for re-use	kg				
MFR	Materials for recycling	kg				
MER	Materials for energy recovery	kg				
EE	Exported energy	MJ, LHV				

Table Notes – Resource Use

- (1): $RPR_E = RPR_T RPR_M$, where RPR_T is equal to the value for renewable energy obtained using the CED LHV methodology.
- (2): Calculated as per ACLCA ISO 21930 Guidance, 6.2 Renewable primary resources with energy content used as a material, RPR_M.
- (3): $NRPR_E = NRPR_T NRPR_M$, where $NRPR_T$ is equal to the value for non-renewable energy obtained using the CED LHV methodology.
- (4): Calculated as per ACLCA ISO 21930 Guidance, 6.4 Non-renewable primary resources with energy content used as a material, NRPR_M.
- (5): Represents the use of net freshwater calculated from life cycle inventory results, i.e., water consumption using ReCiPe Midpoint (E) 2016.

Table Notes – Output Flows and Waste Categories

- (6): Calculated from life cycle inventory results, based on datasets classified under "treatment and disposal of hazardous waste."

 The manufacturer does not generate hazardous waste during the manufacturing process.
- (7): Calculated from life cycle inventory results, based on waste that is neither "hazardous" nor "radioactive."
- (8): Calculated from life cycle inventory results, based on ecoinvent waste flow "high-level radioactive waste for final repository."
- (9): Calculated from life cycle inventory results, based on ecoinvent waste flow "low-level radioactive waste for final repository."

SOPRASEAL XPRESS G								
Environmental Indicator	Unit	A1	A2	A3	A1 - A3			
		(per m²)	(per m²)	(per m²)	(per m²)			
TRACI 2.1								
GWP ₁₀₀ -AR5 ⁽¹⁾	kg CO₂ eq.	5.34E+00	3.91E+00	7.31E-01	9.98E+00			
GWP ₁₀₀ -AR4 ⁽²⁾	kg CO₂ eq.	5.30E+00	3.90E+00	7.20E-01	9.92E+00			
AP	kg SO₂ eq.	1.67E-02	3.13E-02	1.93E-03	4.99E-02			
EP	kg N eq	3.20E-03	2.24E-03	4.22E-04	5.86E-03			
ODP	kg CFC-11 eq.	8.46E-08	8.52E-09	1.27E-08	1.06E-07			
SFP	kg O₃ eq	3.04E-01	8.69E-01	4.73E-02	1.22E+00			
RDP	MJ Surplus	1.53E+01	4.63E+00	1.74E-01	2.01E+01			
Resource Use								
PENR-fossil	MJ, HHV	1.45E+02	3.73E+01	1.12E+01	1.93E+02			
PENR-nuclear	MJ, HHV	5.79E-01	3.41E-03	3.98E-01	9.80E-01			
PER-biomass	MJ, HHV	2.94E-01	7.48E-03	8.96E-02	3.91E-01			
PER-swhg	MJ, HHV	2.66E+00	5.69E-02	6.38E+00	9.10E+00			
Material Resource Consumption and Waste								
NRMR ⁽³⁾	kg	1.08E+01	0.00E+00	0.00E+00	1.08E+01			
RMR ⁽⁴⁾	kg	1.18E-04	0.00E+00	0.00E+00	1.18E-04			
NFW ⁽⁵⁾	L	2.62E+01	4.11E-01	3.29E+01	5.95E+01			
HWD ⁽⁶⁾	kg	5.55E-01	2.16E-02	1.95E-01	7.71E-01			
NHWD ⁽⁷⁾	kg	4.36E-01	3.24E-02	7.85E-01	1.25E+00			

Table Notes - TRACI 2.1

- (1) GWP 100, excludes biogenic CO2 removals and emissions associated with biobased products and packaging; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5).
- (2): GWP 100, excludes biogenic CO2 removals and emissions associated with biobased products and packaging; 100-year time horizon GWP factors are provided by the IPCC 2007 Fourth Assessment Report (AR4).

Table Notes - Material Resource Consumption and Waste

- (3): Calculated based on the product's material input.
- (4): Calculated based on the product's material input.
- (5): Represents the use of net fresh water calculated from life cycle inventory results, i.e., water consumption using ReCiPe Midpoint (E) 2016.
- (6): Calculated from life cycle inventory results, based on datasets classified under "treatment and disposal of hazardous waste."

 The manufacturer does not generate hazardous waste during the manufacturing process.
- (7): Calculated from life cycle inventory results, based on waste that is neither "hazardous" nor "radioactive."

		SOPRAS	SEAL XPRESS G		
Environmental Indicator	Unit	A1 (per m²)	A2 (per m²)	A3 (per m²)	A1 - A3 (per m²)
Resource Use				•	
RPR _E ⁽¹⁾	MJ, LHV	2.95E+00	6.44E-02	6.47E+00	9.49E+00
RPR _M ⁽²⁾	MJ, LHV	1.77E-03	0.00E+00	0.00E+00	1.77E-03
RPR_T	MJ, LHV	2.96E+00	6.44E-02	6.47E+00	9.49E+00
NRPR _E ⁽³⁾	MJ, LHV	8.58E+01	3.34E+01	2.38E+00	1.22E+02
NRPR _M ⁽⁴⁾	MJ, LHV	4.77E+01	0.00E+00	0.00E+00	4.77E+01
$NRPR_T$	MJ, LHV	1.34E+02	3.34E+01	2.38E+00	1.69E+02
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ, LHV	9.54E-24	0.00E+00	0.00E+00	9.54E-24
NRSF	MJ, LHV	1.12E-22	0.00E+00	0.00E+00	1.12E-22
FW ⁽⁵⁾	m³	2.62E-02	4.11E-04	3.29E-02	5.95E-02
Output Flows and Categories	d Waste				
HWD ⁽⁶⁾	kg	5.55E-01	2.16E-02	1.95E-01	7.71E-01
NHWD ⁽⁷⁾	kg	4.36E-01	3.24E-02	7.85E-01	1.25E+00
RWD	kg	1.81E-04	9.05E-10	4.24E-07	1.81E-04
HLRW ⁽⁸⁾	m^3	2.92E-10	2.49E-12	1.17E-09	1.46E-09
ILLRW ⁽⁹⁾	m^3	2.57E-09	1.48E-11	1.25E-09	3.84E-09
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	2.07E-03	0.00E+00	0.00E+00	2.07E-03
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EE	MJ, LHV	3.52E-03	0.00E+00	0.00E+00	3.52E-03

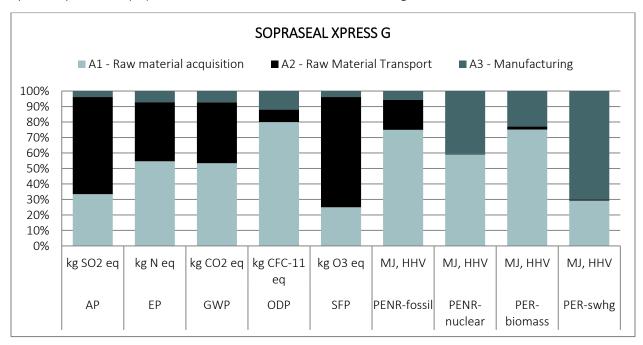
Table Notes – Resource Use

- (1): $RPR_E = RPR_T RPR_M$, where RPR_T is equal to the value for renewable energy obtained using the CED LHV methodology.
- $(2): Calculated \ as \ per \ ACLCA \ ISO \ 21930 \ Guidance, 6.2 \ Renewable \ primary \ resources \ with \ energy \ content \ used \ as \ a \ material, \ RPR_{M}.$
- $(3): NRPR_E = NRPR_T NRPR_M, where \ NRPR_T \ is \ equal \ to \ the \ value \ for \ non-renewable \ energy \ obtained \ using \ the \ CED \ LHV \ methodology.$
- (4): Calculated as per ACLCA ISO 21930 Guidance, 6.4 Non-renewable primary resources with energy content used as a material, NRPR_M.
- (5): Represents the use of net freshwater calculated from life cycle inventory results, i.e., water consumption using ReCiPe Midpoint (E) 2016.

Table Notes - Output Flows and Waste Categories

- (6): Calculated from life cycle inventory results, based on datasets classified under "treatment and disposal of hazardous waste."

 The manufacturer does not generate hazardous waste during the manufacturing process.
- (7): Calculated from life cycle inventory results, based on waste that is neither "hazardous" nor "radioactive."
- (8): Calculated from life cycle inventory results, based on ecoinvent waste flow "high-level radioactive waste for final repository."
- (9): Calculated from life cycle inventory results, based on ecoinvent waste flow "low-level radioactive waste for final repository."



4.2. CONTRIBUTION ANALYSIS

For SOPRASEAL XPRESS G, transport (A2) is the main contributor to acidification potential (AP) and smog formation potential (SFP), and a large contributor to eutrophication potential (EP) and global warming potential (GWP), with the transport of the gypsum board over 1000 km by truck. For renewable primary energy (solar, wind, hydroelectric and geothermal energy), the main contributor is manufacturing (A3). For all other impact categories, extraction and upstream production (A1) is the main contributor as can be seen in the figure below.

Contribution analysis of information modules A1-A3 of the SOPRASEAL XPRESS G product life cycle stage - TRACI & CED indicators.

5. ADDITIONAL ENVIRONMENTAL INFORMATION

5.1. REGULATED HAZARDOUS SUBSTANCES

There are no ingredients present in the SOPRASEAL XPRESS G which, within the current knowledge and in the applicable concentrations, are classified as hazardous to health or the environment and hence require reporting in the product safety data sheet.

5.2. DANGEROUS SUBSTANCES

SOPREMA'S SOPRASEAL XPRESS G is not expected to release dangerous substances during normal use.

5.3. FURTHER INFORMATION

SOPREMA has also published a Health Product Declaration® for the SOPRASEAL XPRESS G. More details are available on the HPDC public repository: https://www.hpd-collaborative.org/hpd-public-repository/.

Additional product information can be found on SOPREMA's website:

(https://www.soprema.ca/en/products-systems/building-components/walls/air-and-vapour-barrier).

REFERENCES

- [1] International Organization for Standardization (ISO), "ISO 14025 Environmental labels and declarations Type III environmental declarations Principles and procedures," 2006.
- [2] International Organization for Standardization (ISO), "ISO 21930:2017(E) Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services," 2017.
- [3] ASTM International, "Water-Resistive and Air Barriers PCR," 2017[Online]. Available: https://www.nsf.org/standards-development/product-category-rules.
- [4] International Organization for Standardization (ISO), "ISO 14044:2006/AMD1:2017/AMD 2:2020 Environmental management Life cycle assessment Requirements and guidelines," 2006.
- [5] F. R. et al., "Overview and Methodology. ecoinvent report No. 1," Dübendorf, 2007.
- [6] ASTM International, "ASTM Program Operator Rules. Version: 8.0, Revised 04/29/20," 2020[Online]. Available: www.astm.org.
- [7] Vertima, "Life Cycle Assessment of SOPREMA's Air Barriers," 2023.

1688, Jean-Berchmans-Michaud Drummondville (Quebec) J2C 8E9 Canada

www.soprema.ca

310 Quadral Dr. Wadsworth, OH 44281 USA

www.soprema.us

