Environmental Product Declaration

The Andersons

Calcium Nitrate

According to ISO 21930 ISO 14025

1. General Information

Manufacturer Name: The Andersons

Program Operator: ASTM International

100 Barr Harbor Drive West Conshohocken, PA

19428-2959, USA

Declaration Number: EPD 445

Reference PCR: ISO 21930: 2017

Date of Issuance: March 31, 2023

End of Validity: March 31, 2028

Product Name: Calcium Nitrate Admixture

EPD Owner: The Andersons

Declared Unit: 1000 kg's of The Andersons Calcium Nitrate

EPD Scope: Cradle-to-gate (A1, A2, and A3)

Verification: ISO 21930 serves as the core PCR. Independent verification of the

declaration according to ISO 14025 and ISO 21930. internal

dolly & Bearle

LCA Reviewer Timothy S. Brooke and EPD Verifier: ASTM International

2. Product

2.1 Product and Company Description

The Andersons are a plant nutrient company that produces a range of dry and liquid industrial products that are used for a variety of applications. The company has been manufacturing and distributing chemicals to the industrial market for over 30 years. One of the products produced by the Andersons is a Calcium Nitrate solution that can be used for concrete admixtures and ready mix concrete production.

3. LCA Calculation Rules

3.1 Declared Unit

The declared unit is 1000 kgs of Calcium Nitrate produced at The Andersons's manufacturing facility.

3.2 System Boundary

The system boundary for this study is limited to a cradle-to-gate focus. (see also Table 4):

- A1 Raw material supply: Extraction, handling, and processing of input materials.
- **A2 Transportation**: Transportation of all input materials from the suppliers to the gate of the manufacturing facility.
- **A3 Manufacturing:** The preparation processes of The Andersons' manufacturing facility. This phase also includes the operations of the manufacturing facility and all process emissions that occur at the production facility.

3.3 Estimates and Assumptions

All significant foreground data was gathered from the manufacturer based on measured values.

3.4 Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.

No material or energy input or output was knowingly excluded from the system boundary.

3.5 Background Data and 3.6 Data Quality

Data was gathered for the primary material and energy inputs used in production for calendar year 2021. Table 1 describes each LCI data source for raw materials (A1), transportation (A2) and the core manufacture process (A3). Table 3 also includes a data quality assessment for on the basis of the technological, temporal, and geographical representativeness.

nputs	LCI Data Source	Geography	Year	Data Quality Assessment
.ime	Ecoinvent 3.7: Lime {GLO}	US	2017	Technology: good
	market for Cut-off, U			Time: very good
				Data is <5 years old
				Geography: very good
				Data is representative of grid specific
				conditions.
Nitric Acid	Ecoinvent 3.7: (67% Nitric acid,	Global	2017	Technology: very good
	without water, in 50% solution			Time: very good
	state {GLO} market for Cut-			Data is <5 years old
	off, U, 33% Tap water {RoW}			Geography: very good
	market for Cut-off)			
Water	Tap water {RoW} market for	Global		Technology: very good
	Cut-off			Time: very good
				Data is <5 years old
				Geography: very good

A2: Transporta	tion			
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment
Trucking	USLCI: Transport, single unit	North	2014	Technology: very good
	truck, short-haul, diesel	America		Time: good
	powered, Northwest/tkm/RNA			Data is <10 years old
				Geography: good
Rail	USLCI: Transport, train, diesel	North	2014	Technology: very good
	powered/US	America		Time: good
				Data is <10 years old
				Geography: good

A3: Manufacturing/Ancillary										
Energy	LCI Data Source	Geography	Year	Data Quality Assessment						
Electricity	ecoinvent 3.7: Electricity,	US	2018	Technology: very good						
	medium voltage, at grid, [RFC]			Time: good						
				Data is <5 years old						
				Geography: very good						
Natural Gas	USLCI: Natural gas, combusted	US	2014	Technology: very good						
	in industrial boiler/US			Time: good						
				Data is <10 years old						
				Geography: very good.						

3.7 Period under Review

Data was gathered for the primary material and energy inputs used in the production for calendar year 2021.

3.8 Allocation

At The Andersons production facility several different products are produced. Since the primary data for manufacturing was only available on a facility level, the environmental load among the products produced is allocated according to its mass. For waste that is recycled, the 'recycled content approach' was chosen. The recycling of waste generated by the product system is cut off.

3.9 Comparability

This LCA was created using industry average data for upstream materials. Data variation can result from differences in supplier locations, manufacturing processes, manufacturing efficiency and fuel types used.

It is noted that EPDs are comparable only if they comply with ISO21930:2017 use the same subcategory PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

4. LCA Results

Life cycle impact assessment (LCIA) is the phase in which the set of results of the inventory analysis – the inventory flow table – is further processed and interpreted in terms of environmental impacts and resource use inventory metrics. Table 2 and 3 below summmarizes the LCA results for the cradle-to-gate (A1-A3) product system. Additionally, it is noted that there are no regulated substances of very high concern. Further expanatory material may be obtained from the full comprehensive LCA report.

Product			Cons	truction	Boundary (x: included in LCA; mnd: module					End-o		module	Bene th	efits Be e Syst	eyond em			
Raw Material supply	Transport	Manufacturing	Transport	Construction / Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-Construction/ Demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling
A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D	D	D
Х	Х	Х	mnd	mnd	mnd	mnd	mnr	mnr	mnr	mnd	mnd	mnd	mnd	mnd	mnd	mnd	mnd	mnd

Table 3. LCIA Results for 1000 kgs							
Environmental Indicator	Abbreviation	Units	Total	A1	A2	A3	
Core Mandatory Impact Indicator							
Global warming potential	GWP	kg CO₂-eq	9.78E+02	9.20E+02	4.92E+01	8.55E+00	
Depletion potential of the stratospheric	ODP	kg CFC-11-	2.07E-05	2.01E-05	2.05E-09	6.12E-07	
Acidification potential of land and water	AP	kg SO₂-eq	4.08E+00	3.53E+00	5.19E-01	3.37E-02	
Eutrophication potential	EP	kg PO ₄ -eq	1.05E+00	9.47E-01	3.08E-02	7.54E-02	
Formation of tropospheric ozone	SFP	Kg O₃-eq	4.21E+01	2.88E+01	1.30E+01	2.17E-01	
Abiotic depletion potential for fossil	ADPF	MJ Surplus	5.45E+03	4.67E+03	6.97E+02	8.43E+01	
Fossil Fuel Depletion	FFD	MJ Surplus	5.67E+02	5.56E+02	6.36E+00	4.50E+00	
Use of Primary Resources							
Renewable primary energy carrier used as energy	RPRE	MJ	1.90E+02	1.87E+02	0.00E+00	2.15E+00	
Renewable primary energy carrier used as material	RPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Non-renewable primary energy used as energy	NRPRE	MJ	6.09E+03	5.22E+03	7.39E+02	1.36E+02	
Non-renewable primary energy used as material	NRPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Secondary Material, Secondary Fuel and	Recovered Energ	ıy					
Use of secondary materials	SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Recovered energy	RE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Mandatory Inventory Parameters	_						
Use of freshwater resources	FW	m³	3.58E+00	3.54E+00	0.00E+00	4.06E-02	
Indicators Describing Waste	_						
Disposed of hazardous waste	HWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Disposed of non-hazardous waste	NHWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Disposed of high-level radioactive waste	HLRW	m³	1.26E-07	9.55E-08	7.50E-09	2.29E-08	
Disposed of low-level radioactive waste	LLRW	m³	2.30E-06	2.02E-06	7.17E-08	2.10E-07	
Components for reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Materials for recycling	MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Recovered energy exported	EE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

5. Interpretation

Figure 1 shows the relative contribution to the cumulative impacts of the A1 through A3 phases of the cradle-to-gate life cycle. A1 is the largest contributor to total cradle-to-gate emissions across all the mandatory impact indicators. Therefore, the raw material supply accounts for majority of the impacts.

Figure 1. Contribution analysis for Calcium Nitrate producer by The Andersons

6. References

- ASTM 2020 ASTM Program Operator for Product Category Rules (PCR) and Environmental Product Declarations (EPDs) General Program Instructions v8, April 29th.
- 2. Athena Institute: 2021 A Cradle-to-Gate Life Cycle Assessment of Calcium Nitrate produced by The Andersons.
- 3. ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- 4. ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 5. ISO 14044:2006/AMD 1:2017/ AMD 2:2020 Environmental management Life cycle assessment Requirements and guidelines.
- 6. 14040:2006/AMD 1:2020 Environmental management Life cycle assessment Principles and framework.

