At CommScope, we believe that corporate responsibility and sustainability means making decisions that have a positive impact on our people, planet and bottom line. CommScope’s leaders have adopted a philosophy on corporate responsibility that embraces our core company values and holds us accountable to produce smart solutions that respect our people and our planet. Meaningful integrity is a decisive personal and company-wide commitment to enable faster, smarter and more sustainable solutions while demonstrating the utmost respect for our human and natural resources. This philosophy finds form in three pillars:

- Environmental
- Social
- Governance

Our commitment enables us to invest wisely in our future. By utilizing innovative technology, intelligent engineering and energy-efficient designs, we’re building sustainable networks that make our customers more agile while also preserving the natural ecosystems from which we source our raw materials.
This declaration is an environmental product declaration (EPD) in accordance with ISO 14025, EN15804, and ISO 21930-2017. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

| EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE | ASTM International
100 Barr Harbor Drive West Conshohocken, PA 19428 |
|---|---|

GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER

MANUFACTURER NAME AND ADDRESS
CommScope, Inc.
1100 CommScope Place Southeast Hickory, NC 28602

DECLARATION NUMBER
EPD 279

DECLARED PRODUCT & FUNCTIONAL UNIT OF DECLARED UNIT
CommScope Cat 6A Riser Data Networking Cable
Functional Unit = 1 meter of installed cable over a 60 year building lifetime

REFERENCE PCR AND VERSION NUMBER

DESCRIPTION OF PRODUCT APPLICATION/USE
CommScope cable products are primarily used in commercial, residential, and educational settings.

PRODUCT RSL DESCRIPTION
30 Years

MARKETS OF APPLICABILITY
Global

DATE OF ISSUE
November 15, 2021

PERIOD OF VALIDITY
5 Years

EPD TYPE
Product Specific

DATASET VARIABILITY
N/A

EPD SCOPE
Cradle-to-Grave

YEAR(S) OF REPORTED PRIMARY DATA
2019

LCA SOFTWARE & VERSION NUMBER
SimaPro v9.1

LCI DATABASE(S) & VERSION NUMBER
Ecoinvent v3.5 & USLCI v2.0

LCIA METHODOLOGY & VERSION NUMBER
TRACI 2.1; CML 4.1

The sub-category PCR review was conducted by: Timothy S Brooke
ASTM International

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:
Thomas P. Gloria, Ph. D.
Industrial Ecology Consultants

Environmental declarations from different programs (ISO 14025) may not be comparable.
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable

Data Networking Cable

General Information

Description of Company/Organization
CommScope (NASDAQ: COMM) is one of the world’s premier network solution providers—transforming connectivity for telecommunications, business enterprise, TV and broadband service providers and ventures across the globe. CommScope helps design, build and manage wired and wireless networks around the world. As a communications infrastructure leader, we shape the always-on networks of tomorrow. For more than 40 years, our global team of more than 30,000 employees, innovators and technologists has empowered customers to anticipate what’s next and push the boundaries of what’s possible.

Product Description
Cat 6A Riser cable is a four pair premise horizontal cable.

Product Type: Cat 6A Riser LAN cable
Product Characteristic: Four pair Riser rated LAN cable.
The Cat 6A Riser LAN cable is a four pair Riser rated LAN cable.

This EPD covers the CommScope Cat 6A Riser cable product family, including:
- UTP CAT 6A Riser - Product ID: CS44R, 1091B, CS41R

Flow Diagram

[Diagram showing the flow of raw materials, transport, manufacturing, distribution, installation, operational energy use, end of life, benefits and loads beyond the system boundaries.]
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

Manufacturer Specific EPD

This product-specific EPD was developed based on the cradle-to-grave (modules A1-D) Life Cycle Assessment. The EPD accounts for raw material extraction and processing, transport, product manufacturing, distribution, installation, use, maintenance, disposal, and potential benefits and loads following the end of life disposal. Manufacturing data were gathered directly from company personnel. For any product group EPDs, an impact assessment was completed for each product and the lowest and highest impacts were reported as representations of the product group. Product grouping was considered appropriate if the individual product impacts differed by no more than ±10% in any impact category.

Application

The Cat 6A Riser rated cable is appropriate for Riser rated LAN cabling applications including 10GBASE-T, 1000BASE-T, 1000BASE-TX, 100BASE-TX, 10BASE-T, 155Mbps ATM, TP-PMD, Token Ring, VoIP.

Material Composition

The primary product components and/or materials must be indicated as a percentage mass to enable the user of the EPD to understand the composition of the product in delivery status.

The average composition of a CommScope Cat 6A Riser Data Networking cable is as follows:

Note: The minimum and maximum values represent the minimum and maximum impact products within this product family. The increase in impact results from the increased weight of colorant, insulation, and jacketing materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage in mass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorant</td>
<td>Minimum: 1.99%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 3.46%</td>
</tr>
<tr>
<td>Conductor</td>
<td>Minimum: 52.13%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 38.11%</td>
</tr>
<tr>
<td>Cross Filler</td>
<td>Minimum: 0.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 0.00%</td>
</tr>
<tr>
<td>Drain Wire</td>
<td>Minimum: 0.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 0.00%</td>
</tr>
<tr>
<td>Insulation</td>
<td>Minimum: 4.89%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 6.38%</td>
</tr>
<tr>
<td>Jacketing</td>
<td>Minimum: 41.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 48.71%</td>
</tr>
<tr>
<td>Rip Cord</td>
<td>Minimum: 0.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 0.00%</td>
</tr>
<tr>
<td>Tape</td>
<td>Minimum: 0.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 3.34%</td>
</tr>
<tr>
<td>Other</td>
<td>Minimum: 0.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 0.00%</td>
</tr>
<tr>
<td>Total</td>
<td>Minimum: 100.00%</td>
</tr>
<tr>
<td></td>
<td>Maximum: 100.00%</td>
</tr>
</tbody>
</table>
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable

Placing on the Market / Application Rules
CMR, NEC Article 800, UL 1666, and UL 444 safety standards. The cable also complies with ANSI/TIA-568.2-D, CENELEC EN 50288-6-1, and ISO/IEC 11801 Class EA transmission standards

Properties of Declared Product as Shipped
CommScope Cat 6A Riser Data Networking cables are delivered as a complete unit, inclusive of all installation materials and instructions.
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Methological Framework

Functional Unit

The declaration refers to the functional unit of 1 meter of installed cable as specified in the PCR.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1 meter of installed cable</td>
<td></td>
</tr>
<tr>
<td>Minimum Mass</td>
<td>0.04</td>
<td>kg</td>
</tr>
<tr>
<td>Conversion factor</td>
<td>26.70</td>
<td>-</td>
</tr>
<tr>
<td>Maximum Mass</td>
<td>0.06</td>
<td>kg</td>
</tr>
<tr>
<td>Conversion factor</td>
<td>17.25</td>
<td>-</td>
</tr>
</tbody>
</table>

System Boundary

This is a cradle to grave Environmental Product Declaration. The following life cycle phases were considered:

<table>
<thead>
<tr>
<th>Product Stage</th>
<th>Construction Process Stage</th>
<th>Use Stage</th>
<th>End of Life Stage</th>
<th>Benefits and Loads Beyond the System Boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Use</td>
<td>Maintenance</td>
<td>Reuse-Recovery-Recycling potential</td>
</tr>
<tr>
<td>Transport</td>
<td>A1</td>
<td>B1</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>A2</td>
<td>B3</td>
<td>B4</td>
<td></td>
</tr>
<tr>
<td>Transport from gate to</td>
<td>A3</td>
<td>B5</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>the site</td>
<td>A4</td>
<td>B7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction/install</td>
<td>A5</td>
<td>C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>process</td>
<td></td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational water use</td>
<td></td>
<td>C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational energy</td>
<td></td>
<td>C4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deconstruction/demolition</td>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of the System Boundary Stages Corresponding to the PCR
(X = Included; MND = Module Not Declared)

*This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

Reference Service Life

The reference service life of a properly installed CommScope Cat 6A Riser Data Networking cable is 30 years. The building estimated service life is 60 years.

Allocation

Allocation was determined on a per meter basis.
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Cut-off Criteria

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass of the considered impact categories. For that a documented assumption is admissible.

For Hazardous Substances the following requirements apply:
• The Life Cycle Inventory (LCI) of hazardous substances will be included, if the inventory is available.
• If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product, if its mass represents more than 0.1% of the product composition.
• If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided.

This EPD is in compliance with the cut-off criteria. No processes were neglected or excluded. Capital items for the production processes (machine, buildings, etc.) were not taken into consideration.

Data Sources

Primary data were collected for every process in the product system under the control of CommScope. Secondary data from the ecoinvent database were utilized when necessary. These data were evaluated and have temporal, geographic, and technical coverage appropriate to the scope of the product category.

Data Quality

The data sources used are complete and representative of global systems in terms of the geographic and technological coverage and are a recent vintage (i.e. less than ten years old). The data used for primary data are based on direct information sources of the manufacturers. Secondary data sets were used for raw materials extraction and processing, end of life, transportation, and energy production flows. Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty.

Period Under Review

The period under review is the full calendar year of 2019.

Treatment of Biogenic Carbon

The uptake and release of biogenic carbon throughout the product life cycle follows ISO 21930:2017 Section 7.2.7.

Comparability and Benchmarking

A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account. Environmental declarations from different programs may not be comparable. Full conformance with the PCR allows for EPD comparability only when all stages a product's life cycle have been considered. However, variations and deviations are possible.

Units

The LCA results within this EPD are reported in SI units.
For life cycle modeling of the considered products, the SimaPro v9.1 Software System for Life Cycle Engineering, developed by PRe Sustainability, is used. The ecoinvent database contains consistent and documented datasets which are documented online. To ensure comparability of results in the LCA, the basic data of the ecoinvent database were used for energy, transportation, and auxiliary materials.

Manufacturing

The primary manufacturing processes occur in multiple locations. Copper wire goes through two drawing processes with an immediate subsequent annealing process. The wire continues down the line to an extruder where the insulation material is applied to the wire. Cooling and drying of the insulated wire then occurs. Two of these insulated wires are then twinned together around each other. Four twinned wire pairs, along with other cable components such as separator tape and/or shielding material, are then bunched together. Subsequently, the bunched wire has a jacket extruded around the bunched cable. After the jacket is applied, the cable is cooled and packaged. Various packaging options exist, but most product is shipped in 1000-foot length spools and/or boxes.

Packaging

All packaging is fully recyclable. The packaging material is composed primarily of wood, with cardboard and plastic materials used for individual product packaging.

Note: The minimum and maximum values represent the minimum and maximum impact products within this product family.

<table>
<thead>
<tr>
<th>Material</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardboard</td>
<td>38.95%</td>
<td>38.95%</td>
</tr>
<tr>
<td>Other</td>
<td>3.13%</td>
<td>3.13%</td>
</tr>
<tr>
<td>Plastic</td>
<td>12.28%</td>
<td>12.28%</td>
</tr>
<tr>
<td>Wood</td>
<td>45.65%</td>
<td>45.65%</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

Transformation

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel type</td>
<td></td>
<td></td>
<td>Diesel</td>
</tr>
<tr>
<td>Liters of fuel</td>
<td>38</td>
<td>38</td>
<td>l/100km</td>
</tr>
<tr>
<td>Transport distance</td>
<td>300</td>
<td>300</td>
<td>km</td>
</tr>
<tr>
<td>Capacity utilization (including empty runs)</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Gross density of products transported</td>
<td>-</td>
<td>-</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Weight of products transported</td>
<td>-</td>
<td>-</td>
<td>kg</td>
</tr>
<tr>
<td>Volume of products transported</td>
<td>-</td>
<td>-</td>
<td>m³</td>
</tr>
<tr>
<td>Capacity utilization volume factor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Product Installation

CommScope Cat 6A Riser Data Networking cables are distributed through and installed by trained installation technicians adhering to local/national standards and requirements. Installation accounts for the energy consumption, material wastage, and support materials use during the installation process, as well as waste treatment of packaging materials. The installation scrap was assumed to be a 5% average in accordance with the PCR. Installation is typically completed using battery-powered equipment and can therefore be neglected due to the amount of electricity that is consumed during the use phase.

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary materials</td>
<td>-</td>
<td>-</td>
<td>kg</td>
</tr>
<tr>
<td>Water consumption</td>
<td>-</td>
<td>-</td>
<td>m³</td>
</tr>
<tr>
<td>Other resources</td>
<td>-</td>
<td>-</td>
<td>kg</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>-</td>
<td>-</td>
<td>kWh</td>
</tr>
<tr>
<td>Other energy carriers</td>
<td>-</td>
<td>-</td>
<td>MJ</td>
</tr>
<tr>
<td>Product loss per functional unit</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Waste materials at construction site</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Output substance (recycle)</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Output substance (landfill)</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Output substance (incineration)</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Packaging waste (recycle)</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Packaging waste (landfill)</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Packaging waste (incineration)</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Direct emissions to ambient air*, soil, and water</td>
<td>0.00</td>
<td>0.00</td>
<td>kg CO₂</td>
</tr>
<tr>
<td>VOC emissions</td>
<td>-</td>
<td>-</td>
<td>kg</td>
</tr>
</tbody>
</table>

*CO₂ emissions to air from disposal of packaging

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Service Life</td>
<td>30</td>
<td>years</td>
</tr>
<tr>
<td>Estimated Building Service Life</td>
<td>60</td>
<td>years</td>
</tr>
<tr>
<td>Number of Replacements</td>
<td>1</td>
<td>number</td>
</tr>
</tbody>
</table>
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

According to
ISO 14025, EN 15804,
and ISO 21930:2017

Product Use

No cleaning, maintenance, repair, or refurbishment is required.

Operational energy use was modeled as use phase losses determined by the IEC 61156-5 standard. The maximum loss values for each cable category are detailed in the table below and were used in the B6 stage.

<table>
<thead>
<tr>
<th>Operational Energy Use (B6)</th>
<th>Maximum Loss Values per Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Min</td>
</tr>
<tr>
<td>Water consumption (from tap, to sewer)</td>
<td>-</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>0.50</td>
</tr>
<tr>
<td>Other energy carriers</td>
<td>-</td>
</tr>
<tr>
<td>Equipment output</td>
<td>-</td>
</tr>
<tr>
<td>Direct emissions to ambient air, soil, and water</td>
<td>-</td>
</tr>
<tr>
<td>Cat Type</td>
<td>Protocol</td>
</tr>
<tr>
<td>CAT5e Ethernet</td>
<td>100M</td>
</tr>
<tr>
<td>CAT6 1G Ethernet</td>
<td></td>
</tr>
<tr>
<td>CAT6a 10G Ethernet</td>
<td></td>
</tr>
<tr>
<td>CAT7 10G Ethernet</td>
<td></td>
</tr>
<tr>
<td>CAT7a 10G Ethernet</td>
<td></td>
</tr>
<tr>
<td>CAT7+ 10G Ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Disposal

The product can be mechanically dissembled to separate the different materials. 85% of the metals used are recyclable. The remainder of components are disposed of through waste incineration with energy recovery, in accordance with the PCR, with the exception of fiberglass which would be landfilled.

<table>
<thead>
<tr>
<th>End of life (C1-C4)</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collected separately</td>
<td>0.02</td>
<td>0.02</td>
<td>kg</td>
</tr>
<tr>
<td>Collected as mixed construction waste</td>
<td>0.02</td>
<td>0.03</td>
<td>kg</td>
</tr>
<tr>
<td>Reuse</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Recycling</td>
<td>0.02</td>
<td>0.02</td>
<td>kg</td>
</tr>
<tr>
<td>Landfilling</td>
<td>0.00</td>
<td>0.00</td>
<td>kg</td>
</tr>
<tr>
<td>Incineration with energy recovery</td>
<td>0.02</td>
<td>0.04</td>
<td>kg</td>
</tr>
<tr>
<td>Energy conversion</td>
<td>44.00</td>
<td>44.00</td>
<td>%</td>
</tr>
<tr>
<td>Removals of biogenic carbon</td>
<td>-</td>
<td>-</td>
<td>kg</td>
</tr>
</tbody>
</table>

Re-use Phase

Re-use of the product is not common due to the nature of hard-wiring the product into the building system.

<table>
<thead>
<tr>
<th>Re-Use, recovery, And/Or Recycling Potential (D)</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net energy benefit from energy recovery from waste treatment declared as exported energy in C3 (R>0.6)</td>
<td>0.15</td>
<td>0.30</td>
<td>MJ</td>
</tr>
<tr>
<td>Net energy benefit from thermal energy due to treatment of waste declared as exported energy in C4 (R<0.6)</td>
<td>0.00</td>
<td>0.00</td>
<td>MJ</td>
</tr>
<tr>
<td>Net energy benefit from material flow declared in C3 for energy recovery</td>
<td>0.00</td>
<td>0.00</td>
<td>MJ</td>
</tr>
<tr>
<td>Process and conversion efficiencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further assumptions for scenario development (e.g. further processing technologies, assumptions on correction factors):</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

LCA Results - Minimum Impact

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Impact Assessment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>kg CO2-eq.</td>
<td>2.6E-01</td>
<td>1.1E-03</td>
<td>6.9E-04</td>
<td>3.1E-01</td>
<td>3.3E-01</td>
<td>3.5E-04</td>
<td>4.6E-02</td>
<td>1.1E-03</td>
<td>-2.9E-01</td>
</tr>
<tr>
<td>ODP</td>
<td>kg CFC-11 Eq.</td>
<td>7.4E-08</td>
<td>4.2E-14</td>
<td>4.2E-12</td>
<td>7.5E-08</td>
<td>5.4E-12</td>
<td>1.3E-14</td>
<td>9.4E-10</td>
<td>7.7E-11</td>
<td>-1.9E-08</td>
</tr>
<tr>
<td>AP Air</td>
<td>kg SO2-eq.</td>
<td>4.2E-03</td>
<td>6.5E-06</td>
<td>4.2E-07</td>
<td>4.2E-03</td>
<td>2.9E-03</td>
<td>2.1E-06</td>
<td>2.1E-05</td>
<td>3.2E-08</td>
<td>-5.3E-03</td>
</tr>
<tr>
<td>EP</td>
<td>kg N-eq.</td>
<td>2.0E-02</td>
<td>3.6E-07</td>
<td>8.9E-06</td>
<td>2.0E-02</td>
<td>3.9E-05</td>
<td>1.2E-07</td>
<td>1.1E-05</td>
<td>9.5E-06</td>
<td>-3.0E-02</td>
</tr>
<tr>
<td>SP</td>
<td>kg O2-eq.</td>
<td>7.0E-02</td>
<td>1.8E-04</td>
<td>9.9E-06</td>
<td>7.0E-02</td>
<td>1.9E-02</td>
<td>5.7E-05</td>
<td>3.3E-04</td>
<td>6.6E-05</td>
<td>-9.9E-02</td>
</tr>
<tr>
<td>FFD</td>
<td>MJ surplus</td>
<td>3.1E-01</td>
<td>2.1E-03</td>
<td>1.1E-04</td>
<td>3.2E-01</td>
<td>2.9E-01</td>
<td>6.7E-04</td>
<td>4.2E-03</td>
<td>7.5E-04</td>
<td>-2.6E-01</td>
</tr>
</tbody>
</table>

*All use phase and disposal stages have been considered and only those with non-zero values have been reported.

CML 4.1 Impact Assessment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>kg CO2-eq.</td>
<td>2.6E-01</td>
<td>1.1E-03</td>
<td>6.0E-04</td>
<td>3.1E-01</td>
<td>3.3E-01</td>
<td>3.5E-04</td>
<td>4.6E-02</td>
<td>1.1E-03</td>
<td>-2.9E-01</td>
</tr>
<tr>
<td>ODP</td>
<td>kg CFC-11 Eq.</td>
<td>7.0E-08</td>
<td>4.1E-14</td>
<td>3.2E-12</td>
<td>7.1E-08</td>
<td>5.4E-12</td>
<td>1.3E-14</td>
<td>9.4E-10</td>
<td>7.7E-11</td>
<td>-1.9E-08</td>
</tr>
<tr>
<td>AP Air</td>
<td>kg SO2-eq.</td>
<td>3.7E-03</td>
<td>5.4E-06</td>
<td>3.4E-07</td>
<td>3.8E-03</td>
<td>2.9E-03</td>
<td>2.1E-06</td>
<td>2.1E-05</td>
<td>3.2E-08</td>
<td>-5.3E-03</td>
</tr>
<tr>
<td>EP</td>
<td>kg (PO4)3-eq.</td>
<td>8.8E-03</td>
<td>9.6E-07</td>
<td>3.3E-06</td>
<td>8.8E-03</td>
<td>3.9E-05</td>
<td>1.2E-07</td>
<td>1.1E-05</td>
<td>9.5E-06</td>
<td>-3.0E-02</td>
</tr>
<tr>
<td>POCP</td>
<td>kg ethane-eq.</td>
<td>1.1E-04</td>
<td>2.5E-07</td>
<td>1.3E-07</td>
<td>5.6E-04</td>
<td>1.9E-02</td>
<td>5.7E-05</td>
<td>3.3E-04</td>
<td>6.6E-05</td>
<td>-9.9E-02</td>
</tr>
<tr>
<td>ADPE</td>
<td>kg Sb-eq.</td>
<td>5.1E-05</td>
<td>0.0E+00</td>
<td>2.1E-10</td>
<td>5.7E-03</td>
<td>2.9E-01</td>
<td>6.7E-04</td>
<td>4.2E-03</td>
<td>7.5E-04</td>
<td>-2.6E-01</td>
</tr>
<tr>
<td>ADPF</td>
<td>MJ</td>
<td>3.4E+00</td>
<td>1.4E-02</td>
<td>7.6E-04</td>
<td>3.4E+00</td>
<td>3.4E-01</td>
<td>3.5E-04</td>
<td>4.6E-02</td>
<td>1.1E-03</td>
<td>-2.9E-01</td>
</tr>
</tbody>
</table>

*All use phase and disposal stages have been considered and only those with non-zero values have been reported.

Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPRc</td>
<td>MJ</td>
<td>7.8E-01</td>
<td>0.0E+00</td>
<td>-1.1E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>RPRm</td>
<td>MJ</td>
<td>3.3E+00</td>
<td>4.6E+00</td>
<td>-3.4E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>NRPRc</td>
<td>MJ</td>
<td>3.3E+00</td>
<td>1.4E-02</td>
<td>-2.5E+00</td>
<td>7.8E-01</td>
<td>4.6E+00</td>
<td>4.5E-03</td>
<td>3.9E-02</td>
<td>7.1E-03</td>
<td>-3.4E+00</td>
</tr>
<tr>
<td>NRPRm</td>
<td>MJ</td>
<td>3.4E-01</td>
<td>0.0E+00</td>
<td>2.5E+00</td>
<td>2.9E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>SM</td>
<td>kg</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>RSF</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>NRSF</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>RE</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>FW</td>
<td>m3</td>
<td>2.3E-03</td>
<td>3.8E-07</td>
<td>3.5E-03</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.3E-03</td>
<td>4.0E-06</td>
<td>-2.4E-03</td>
<td></td>
</tr>
</tbody>
</table>

*All use phase and disposal stages have been considered and only those with non-zero values have been reported.
Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows and Waste Categories

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>8.3E-08</td>
<td>0.0E+00</td>
<td>4.2E-09</td>
<td>8.7E-08</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>NHWD</td>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>1.4E-04</td>
<td>0.0E+00</td>
<td>1.0E-03</td>
<td>4.1E-03</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>HLRW</td>
<td>High-level radioactive waste</td>
<td>kg or m³</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>ILLRW</td>
<td>Intermediate- and low-level radioactive waste</td>
<td>kg or m³</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>CRU</td>
<td>Components for re-use</td>
<td>kg</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>MR</td>
<td>Materials for recycling</td>
<td>kg</td>
<td>1.4E-03</td>
<td>2.7E-03</td>
<td>2.1E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.7E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>MER</td>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>0.0E+00</td>
<td>2.5E-04</td>
<td>1.8E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.8E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>EE</td>
<td>Recovered energy exported from system</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.5E-01</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.5E-01</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
</tbody>
</table>

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRP</td>
<td>Biogenic Carbon Removal from Product</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEP</td>
<td>Biogenic Carbon Emissions from Product</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCRK</td>
<td>Biogenic Carbon Removal from Packaging</td>
<td>kg CO₂</td>
<td>1.20E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.20E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEK</td>
<td>Biogenic Carbon Emissions from Packaging</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.20E-03</td>
<td>1.20E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEW</td>
<td>Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CCE</td>
<td>Calcination Carbon Emissions</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CCR</td>
<td>Carbonation Carbon Removal</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CWN</td>
<td>Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

All use phase and disposal stages have been considered and only those with non-zero values have been reported
The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Significant impact reductions in the benefits and loads beyond system boundaries phase (D) can be attributed to energy produced from incineration of materials in the product that cannot be recycled.
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

LCA Results - Maximum Impact

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Impact Assessment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
<td>kg CO2-Eq.</td>
<td>3.4E-01</td>
<td>1.7E-03</td>
<td>6.9E-04</td>
<td>4.3E-01</td>
<td>3.3E-01</td>
<td>5.4E-04</td>
<td>8.7E-02</td>
<td>2.0E-03</td>
<td>-3.9E-01</td>
</tr>
<tr>
<td>ODP</td>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>kg CFC-11 Eq.</td>
<td>1.2E-07</td>
<td>6.4E-14</td>
<td>3.2E-12</td>
<td>1.2E-07</td>
<td>5.4E-12</td>
<td>2.1E-14</td>
<td>1.8E-09</td>
<td>1.4E-10</td>
<td>-2.1E-08</td>
</tr>
<tr>
<td>AP Air</td>
<td>Acidification potential for air emissions</td>
<td>kg SO2-Eq.</td>
<td>4.9E-03</td>
<td>1.0E-05</td>
<td>4.2E-07</td>
<td>4.9E-03</td>
<td>2.9E-03</td>
<td>3.2E-06</td>
<td>3.9E-05</td>
<td>6.0E-06</td>
<td>-6.5E-03</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
<td>kg N-Eq.</td>
<td>2.3E-02</td>
<td>5.6E-07</td>
<td>8.9E-06</td>
<td>2.3E-02</td>
<td>3.9E-05</td>
<td>1.8E-07</td>
<td>2.0E-05</td>
<td>1.8E-05</td>
<td>-3.4E-02</td>
</tr>
<tr>
<td>SP</td>
<td>Smog formation potential</td>
<td>kg O3-Eq.</td>
<td>8.1E-02</td>
<td>2.8E-04</td>
<td>9.9E-06</td>
<td>8.2E-02</td>
<td>1.9E-02</td>
<td>8.8E-05</td>
<td>6.1E-04</td>
<td>1.2E-04</td>
<td>-1.2E-01</td>
</tr>
<tr>
<td>FFD</td>
<td>Fossil Fuel Depletion</td>
<td>MJ-surplus</td>
<td>4.6E-01</td>
<td>3.2E-03</td>
<td>1.1E-04</td>
<td>4.6E-01</td>
<td>2.9E-01</td>
<td>1.0E-03</td>
<td>7.9E-03</td>
<td>1.4E-03</td>
<td>-3.5E-01</td>
</tr>
</tbody>
</table>

All use phase and disposal stages have been considered and only those with non-zero values have been reported.

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Impact Assessment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
<td>kg CO2-Eq.</td>
<td>3.4E-01</td>
<td>1.7E-03</td>
<td>6.9E-04</td>
<td>4.3E-01</td>
<td>3.3E-01</td>
<td>5.4E-04</td>
<td>8.7E-02</td>
<td>2.0E-03</td>
<td>-3.9E-01</td>
</tr>
<tr>
<td>ODP</td>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>kg CFC-11 Eq.</td>
<td>1.2E-07</td>
<td>6.4E-14</td>
<td>3.2E-12</td>
<td>1.2E-07</td>
<td>5.4E-12</td>
<td>2.1E-14</td>
<td>1.8E-09</td>
<td>1.4E-10</td>
<td>-2.1E-08</td>
</tr>
<tr>
<td>AP Air</td>
<td>Acidification potential for air emissions</td>
<td>kg SO2-Eq.</td>
<td>4.4E-03</td>
<td>8.3E-06</td>
<td>3.4E-07</td>
<td>4.4E-03</td>
<td>2.9E-03</td>
<td>3.2E-06</td>
<td>3.9E-05</td>
<td>6.0E-06</td>
<td>-6.5E-03</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
<td>kg N-Eq.</td>
<td>2.3E-02</td>
<td>5.6E-07</td>
<td>8.9E-06</td>
<td>2.3E-02</td>
<td>3.9E-05</td>
<td>1.8E-07</td>
<td>2.0E-05</td>
<td>1.8E-05</td>
<td>-3.4E-02</td>
</tr>
<tr>
<td>POCP</td>
<td>Formation potential of tropospheric ozone photochemical oxidants</td>
<td>kg ethene-Eq.</td>
<td>1.4E-04</td>
<td>3.8E-07</td>
<td>1.3E-07</td>
<td>9.6E-04</td>
<td>1.9E-02</td>
<td>8.8E-05</td>
<td>6.1E-04</td>
<td>1.2E-04</td>
<td>-1.2E-01</td>
</tr>
<tr>
<td>ADPE</td>
<td>Abiotic depletion potential for non-fossil resources</td>
<td>kg Sb-Eq.</td>
<td>5.8E-05</td>
<td>0.0E+00</td>
<td>2.1E-10</td>
<td>1.0E-02</td>
<td>2.9E-01</td>
<td>1.0E-03</td>
<td>7.9E-03</td>
<td>1.4E-03</td>
<td>-3.5E-01</td>
</tr>
<tr>
<td>ADPF</td>
<td>Abiotic depletion potential for fossil resources</td>
<td>MJ</td>
<td>4.7E+00</td>
<td>2.2E-02</td>
<td>7.8E-04</td>
<td>4.8E+00</td>
<td>3.4E-01</td>
<td>5.4E-04</td>
<td>8.7E-02</td>
<td>2.0E-03</td>
<td>-3.9E-01</td>
</tr>
</tbody>
</table>

All use phase and disposal stages have been considered and only those with non-zero values have been reported.

Results below contain the resource use throughout the life cycle of the product.

Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPR_{CE}</td>
<td>Renewable primary energy as energy carrier</td>
<td>MJ</td>
<td>9.1E-01</td>
<td>0.0E+00</td>
<td>-1.2E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>RPR_{EM}</td>
<td>Renewable primary energy resources as material utilization</td>
<td>MJ</td>
<td>5.5E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>NRPR_{CE}</td>
<td>Nonrenewable primary energy as energy carrier</td>
<td>MJ</td>
<td>4.3E+00</td>
<td>2.2E-02</td>
<td>-2.5E+00</td>
<td>1.9E+00</td>
<td>4.6E+00</td>
<td>6.9E-03</td>
<td>7.4E-02</td>
<td>1.3E-02</td>
<td>-4.7E+00</td>
</tr>
<tr>
<td>NRPR_{EM}</td>
<td>Nonrenewable primary energy as material utilization</td>
<td>MJ</td>
<td>6.8E-01</td>
<td>0.0E+00</td>
<td>2.5E+00</td>
<td>3.2E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>Use of secondary material</td>
<td>kg</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>RSF</td>
<td>Use of renewable secondary fuels</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>NRSF</td>
<td>Use of nonrenewable secondary fuels</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>Energy recovered from disposed waste</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>Use of net fresh water</td>
<td>m³</td>
<td>3.0E-03</td>
<td>3.8E-07</td>
<td>5.3E-03</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>2.3E-03</td>
<td>7.5E-06</td>
<td>-2.7E-03</td>
<td></td>
</tr>
</tbody>
</table>

All use phase and disposal stages have been considered and only those with non-zero values have been reported.
Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows and Waste Categories

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>8.3E-08</td>
<td>0.0E+00</td>
<td>4.2E-09</td>
<td>8.7E-08</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>NHWD</td>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>1.4E-04</td>
<td>0.0E+00</td>
<td>1.0E-03</td>
<td>4.5E-03</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>3.3E-03</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>HLRW</td>
<td>High-level radioactive waste</td>
<td>kg or m³</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>ILLRW</td>
<td>Intermediate- and low-level radioactive waste</td>
<td>kg or m³</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>CRU</td>
<td>Components for re-use</td>
<td>kg</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>MR</td>
<td>Materials for recycling</td>
<td>kg</td>
<td>1.4E-03</td>
<td>0.0E+00</td>
<td>2.7E-03</td>
<td>2.3E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.9E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>MER</td>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>2.5E-04</td>
<td>3.6E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>3.6E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>EE</td>
<td>Recovered energy exported from system</td>
<td>MJ</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>3.0E-01</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>3.0E-01</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
</tr>
</tbody>
</table>

All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B4</th>
<th>B6</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRP</td>
<td>Biogenic Carbon Removal from Product</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEP</td>
<td>Biogenic Carbon Emissions from Product</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCRK</td>
<td>Biogenic Carbon Removal from Packaging</td>
<td>kg CO₂</td>
<td>1.20E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.20E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEK</td>
<td>Biogenic Carbon Emissions from Packaging</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.20E-03</td>
<td>1.20E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEW</td>
<td>Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CCE</td>
<td>Calcination Carbon Emissions</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CCR</td>
<td>Carbonation Carbon Removal</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CWNR</td>
<td>Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process</td>
<td>kg CO₂</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

All use phase and disposal stages have been considered and only those with non-zero values have been reported
The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Significant impact reductions in the benefits and loads beyond system boundaries phase (D) can be attributed to energy produced from incineration of materials in the product that cannot be recycled.
Environmental and Health During Manufacturing

CommScope values employees’ health, safety and well-being. To this end, we maintain a robust company-wide environment, health and safety (EHS) management system. This is an integrated program based on the requirements of the International Standards of ISO45001 and ISO14001. To support this integrated EHS management system, CommScope utilizes a web-based platform, the BSI Entropy™ tool. This tool supports the management of our EHS processes and operations at the corporate and facility level. All EHS management system records (policies, procedures, method statements, health and safety risk assessments, environmental aspect/impact assessments, legal requirements, permits, training, internal and external audits, incidents and implemented CAPA, KPIs, and other records related to EHS) are maintained and managed in Entropy. In addition, all CommScope major manufacturing facilities are certified according to the ISO14001 and ISO45001 standards. Our vision and commitments are detailed in our EHS Policy.

CommScope understands the need to address the environmental impacts of its products and services. CommScope engages product development teams in designing innovative and more sustainable solutions across a product’s life cycle—from design and manufacturing to product use and end of life. CommScope is committed to demonstrating a high standard of global product compliance practices. Through this commitment, we actively monitor global environmental trends and emerging regulatory requirements that may affect our products, operations, supply chain, and customer base. We are committed to be compliant with all applicable environmental product-related legal and other requirements. To achieve this, we have a global organization comprising environmental specialists, engineers, and product compliance experts who are constantly ensuring our compliance status is maintained. We manage our compliance using a cross-functional approach with our engineers, designers, quality organization, supply chain organization, and production.

CommScope is committed to upholding the human rights of its employees. To ensure our employees are treated with dignity and respect, we follow a well-established Code of Ethics and Business Conduct and Labor Policy that aligns with recognized standards and guidelines from the International Labor Organization, the United Nations Global Compact, the UN Universal Declaration of Human Rights, SA8000 and applicable laws.

Environmental and Health During Installation

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

Extraordinary Effects

Fire
Cable complies with applicable Riser Communications Cable fire safety standards.

Water
None

Mechanical Destruction
None

Delayed Emissions

Global warming potential is calculated using the TRACI 2.1 and CML 4.1 impact assessment methodologies. Delayed emissions are not considered.

Environmental Activities and Certifications

Our Sustainability Report details CommScope’s efforts to operate the business ethically and with integrity; protect the environment; maintain the health, safety and well-being of our workforce; and support the communities in which we operate. To learn more, view our comprehensive Sustainability Report at https://www.commscope.com/corporate-responsibility-and-sustainability/.

Further Information

CommScope, Inc.
1100 CommScope Place Southeast
Hickory, NC 28602
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable

Data Networking Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

References

- EN 15804 EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.
- UL 2818 GREENGUARD Certification Program for Chemical Emissions for Building Materials, Finishes and Furnishings.
Environmental Product Declaration
CommScope Cat 6A Riser Data Networking Cable
Data Networking Cable

Sustainable Solutions Corporation
155 Railroad Plaza, Suite 203
Royersford, PA 19468 USA
(+1) 610 569-1047
info@sustainablesolutionscorporation.com
www.sustainablesolutionscorporation.com

Contact Information

Study Commissioner

For more information, please visit http://www.commscope.com, or contact Technical Support at http://commscope.com/contact-us/contact-commscope or 1-800-830-5056.

LCA Practitioner

Sustainable Solutions Corporation
155 Railroad Plaza, Suite 203
Royersford, PA 19468 USA
(+1) 610 569-1047
info@sustainablesolutionscorporation.com
www.sustainablesolutionscorporation.com