ENVIRONMENTAL PRODUCT DECLARATION

Vitro Architectural Glass
Flat Glass Products

This EPD was not written to support comparative assertions. Even for similar products, differences in declared unit, use and end-of-life stage assumptions and data quality may produce incomparable results. It is not recommended to compare EPDs with another organization, as there may be differences in methodology, assumptions, allocation methods, data quality such as variability in data sets and results of variability in assessment software tools used.

Issue Date: July 25, 2017
Valid Until: July 25, 2022

Declaration Number: ASTM-EPD #061

Copyright ASTM International
300 Barr Harbor Drive, PO Box C700
West Conshohocken, PA 19428-2959
United States

Program Operator: ASTM International
Company: Vitro Architectural Glass

PCR Reference: NSF GANA Product Category Rule (PCR) for Flat Glass - UNCPG 3711
PCR review was conducted by: Jack Gelbig (Chair), Ecoform, ncgs@nsf.org
Declared Unit: 1 metric tonne of flat glass maintained for a 30-year reference service life (RSL)
Declaration Information

Product Information

Product Name: Vitro Architectural Flat Glass
Product Definition: Vitro manufactures flat glass at Carlisle, Pennsylvania; Wichita Falls, Texas; and Fresno, California.

This Environmental Product Declaration is valid for the following uncoated Vitro Glass products:

- Clear glass
- Starphire® low-iron glass
- Acuity™ low-iron glass
- Solarphire® glass
- Atlantica® glass (tinted)
- Azuria® glass (tinted)
- Graylite® II glass (tinted)
- Optiblue® glass (tinted)
- Optigray® glass (tinted)
- Pacifica® glass (tinted)
- Solarblue® glass (tinted)
- Solarbronze® glass (tinted)
- Solargray® glass (tinted)
- Solexia® glass (tinted)

Declaration Type: Business-to-business
Period of Validity: This declaration is valid for a period of five years from the date of publication.
Geographic Scope: This declaration is valid for Vitro Glass products sold worldwide.
Product Application and/or Characteristics

This declaration is valid for all Vitro Glass clear, low-iron and uncoated tinted glass products that have been manufactured and/or delivered to customers in their unfinished, unprocessed, annealed state. This declaration does not apply to Vitro Glass products that have been coated or heat-treated or that have undergone other forms of secondary processing.

Annealed Vitro Glass products are intended primarily for interior and exterior applications for commercial and residential building projects, but may also be specified for a limited range of industrial applications, including solar power collection and others. Optical, thermal and mechanical properties for all products are available at VitroGlazings.com or by calling 855-VTRO-GLS (887-6457).

Content of the Declaration

- Product definition and physical building-related data
- Details of raw materials and material origin
- Description of how the product is manufactured
- Data on usage condition, unusual effects and end-of-life phase
- Life Cycle Assessment (LCA) results

Verification

This LCA was independently verified in accordance with ISO 21930, ISO 14025, and the reference PCR by:

Thomas P. Gloria, Ph. D.
Industrial Ecology Consultants
35 Bracebridge Rd.
Newton, MA 02459-1728
t.gloria@industrial-ecology.com

This declaration was independently verified in accordance with ISO 14025 and the reference PCR by:

Timothy S. Brooke
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428
tbrooke@astm.org

7/25/17
EPD Summary

This document is a Type III environmental product declaration by Vitro Architectural Glass that is certified by ASTM International (ASTM) as conforming to the requirements of ISO 14025. ASTM has determined that the LCA information fulfills the requirements of ISO 14044 in accordance with the instructions listed in the referenced product category rules (PCR). The intent of this document is to further the development of environmentally compatible and sustainable construction methods by providing comprehensive environmental information related to potential impacts in accordance with international standards.

This EPD was not written to support any comparative assertions. Even for similar products, differences in declared unit, use and end-of-life assumptions, and data quality may produce incomparable results. It is not recommended to compare EPDs with another organization, as there may be differences in assumptions, methodology, allocation methods, and data quality such as variability in datasets and results of variability in assessment software tools.

Scope and Boundaries of the Life Cycle Assessment

The LCA was performed according to ISO 14040 following the requirements of the ASTM EPD Program Instructions and referenced PCR.

System Boundary: Cradle-to-gate
Allocation Method: Cut-off approach
Declared Unit: 1 metric tonne of flat glass maintained for a 30-year reference service life (RSL)

Life Cycle Assessment Results (TRACI 2.1) Vitro Architectural Flat Glass

<table>
<thead>
<tr>
<th>EVALUATION VARIABLE</th>
<th>UNIT PER METRIC TONNE</th>
<th>TOTAL</th>
<th>RAW MATERIALS</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy, non-renewable</td>
<td>MJ</td>
<td>19,600</td>
<td>4,870</td>
<td>14,800</td>
</tr>
<tr>
<td>Primary Energy, renewable</td>
<td>MJ</td>
<td>695</td>
<td>227</td>
<td>468</td>
</tr>
<tr>
<td>Global Warming Potential</td>
<td>kg CO₂ eq.</td>
<td>1,370</td>
<td>350</td>
<td>1,020</td>
</tr>
<tr>
<td>Ozone Depletion Potential</td>
<td>kg CFC-11 eq.</td>
<td>1.10E-07</td>
<td>2.96E-08</td>
<td>8.06E-08</td>
</tr>
<tr>
<td>Acidification Potential</td>
<td>kg SO₂ eq.</td>
<td>8.02</td>
<td>0.909</td>
<td>7.11</td>
</tr>
<tr>
<td>Eutrophication Potential</td>
<td>kg N eq.</td>
<td>0.461</td>
<td>0.0501</td>
<td>0.411</td>
</tr>
<tr>
<td>Smog Formation Potential</td>
<td>kg O₃ eq.</td>
<td>212</td>
<td>16.6</td>
<td>195</td>
</tr>
<tr>
<td>Mineral Resource Depletion Potential (ReCiPe 1.08)</td>
<td>kg Fe eq.</td>
<td>12.3</td>
<td>6.23</td>
<td>6.09</td>
</tr>
</tbody>
</table>
Additional Information

To achieve its goal of being an environmentally responsible company, Vitro Glass has re-engineered manufacturing processes at its glass plants to minimize energy production, improve air and water quality, and cut waste.

For example, Vitro Glass’s Wichita Falls, Texas plant recently was cited as a national model for water reclamation and recycling, due to a $1.9 million project that diverts treated non-potable wastewater from the city’s wastewater treatment facility to Vitro Glass’s seven glass-cooling towers. The project, which was implemented during extreme drought conditions in 2014 and 2015, has reduced potable water consumption at the glass plant by more than 50 million gallons per year since 2014 (Source: Water Environment & Reuse Foundation, Final Report, Feb. 2017).

Vitro Glass also was the first U.S. glass manufacturer to have its products recognized by the Cradle to Cradle Certified™ Products Program and has maintained that certification ever since. To meet the Cradle to Cradle Certified Product Standard, Vitro Glass has undergone a thorough audit of the materials used in the formulation and production of its glass products, the processes used to manufacture them, and the company’s commitment to a Global Code of Ethics. The certification was awarded based on the following five criteria: Material Health, Material Reutilization, Renewable Energy & Carbon Management, Water Stewardship and Social Fairness.

Vitro Glass equips its glass-making plants with extensive systems to recover and store discarded (or scrap) glass known as cullet, a valuable feedstock that reduces procurement of virgin materials and the amount of energy consumed during the glass-melting process. Greater than 99 percent of the unused glass the company manufactures is reutilized in production.

Vitro Glass ships many of its glass products on reusable steel racks, which has reduced the amount of disposal packaging that accompanies them by 65 percent.
1. Product

1.1 Description of Company

Vitro Architectural Glass (Vitro Glass) is a leading glass manufacturer with an extensive portfolio of flat and processed glass products engineered for commercial and residential buildings, and industrial applications. The company operates manufacturing facilities in Carlisle, Pennsylvania; Wichita Falls, Texas; Salem, Oregon; and Fresno, California. Flat glass is produced exclusively at the Carlisle, Wichita Falls and Fresno facilities.

1.2 Product Under Study

The declared products submitted for evaluation are uncoated and unprocessed flat glass products, as defined by NSF GANA Product Category Rule (PCR) for Flat Glass - UNCPC 3711, manufactured by Vitro Architectural Glass. Flat glass is a clear, sheet glass produced from soda-lime silicates, along with metal-oxide materials that are used in the creation of tinted glasses. The products are commonly used for windows, glass doors and walls. The declared glass products are available in a range of thicknesses and treatment options. While designed for a wide range of commercial, institutional and residential building applications, the thicknesses selected for this declaration are representative primarily of commercial building applications.

Colored or tinted glasses are primarily the same composition as clear glass with minor adjustments to account for the addition of colorants. All batch materials and the associated energy to produce a product with them have been accounted for in this declaration.

This declaration covers a range of float glass products manufactured by Vitro Glass:

- Clear glass
- Starphire® glass
- Acuity™ low-iron glass
- Solarphire® glass
- Atlantica® glass
- Azuria® glass
- Graylite® II glass
- Optiblue® glass
- Optigray® glass
- Pacifica® glass
- Solarblue® glass
- Solarbronze® glass
- Solargray® glass
- Solexia® glass

The following life cycle stages are evaluated:

- Material Extraction and Pre-Processing — Covers raw material extraction and processing, along with inbound transport of materials to glass production facility.
- Production — Relates to the manufacture of glass from primary materials, as well as materials used in packaging. This stage ends when the final glass product exits the production line and is stored onsite.
- Packaging and Storage — Addresses onsite storage of glass products before they leave the facility to be delivered to the end-user or fabricator. This life cycle stage is not associated with any potential environmental impacts.
1.3 Product Use and Application

Vitro Glass products are intended primarily for interior and exterior applications for commercial and residential building projects. They typically are processed into coated, heat-treated or laminated glass products and/or assembled into multi-pane insulating glass units (IGUs) specified by architects, glazing contractors and other building professionals for finished homes and buildings. Flat glass products also may be used for a limited range of industrial applications, including solar power collection and others.

The product-use life cited for this declaration is defined as 30 years per NSF GANA Product Category Rule (PCR) for Flat Glass - UNCPC 3711.

1.4 Technical Data

Optical, thermal and mechanical properties for all Vitro Glass products are available at www.VitroGlazings.com or by calling 855-VTRO-GLS (887-6457).

1.5 Placing on the Market

The products considered in this EPD conform to the following technical specifications for float glass products (dependent on location):

- ASTM C 1036: Standard Specification for Flat Glass; and/or
- EN 572: Glass in Building. Basic soda-lime silicate glass products. Float glass; and/or
- Malaysia – MS 1135: Specification for Float Glass and Polished Plate

Vitro Architectural Glass is certified to ISO 9001:Quality Management System.

1.6 Properties ofDeclared Product as Delivered

Vitro Glass products are sold according to the dimensions specified by the user. In the case of pre-cut glass, products are sold in packs in these common dimensions:

- 1.80 m x 2.13 m (72" x 84")
- 1.83 m x 2.44 m (72" x 96")
- 2.44 m x 3.30 m (96" x 130")
- 3.30 m x 5.18 m (130" x 204")
1.7 Base and Ancillary Materials

Float glass is primarily made from a blend of silica, soda ash, dolomite, metal compounds and recycled cullet glass. Table 1 shows the production-weighted average composition of float glass manufactured by Vitro Glass.

Table 1: Material composition of float glass

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>MASS [%]</th>
<th>RENEWABLE</th>
<th>NON-RENEWABLE</th>
<th>RECYCLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica sand</td>
<td>59.8</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naturally mined soda ash</td>
<td>18.1</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>13.7</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone</td>
<td>6.3</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caustic soda</td>
<td>1.2</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>0.6</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal compounds</td>
<td>0.2</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbocite #1</td>
<td><0.1</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium nitrate</td>
<td><0.1</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Starphire® glass and tinted glasses are similar in composition to clear glass, but may include adjustments to trace elements for melting and coloring purposes.
1.8 Flat Glass Manufacturing

The manufacturing process described in this declaration includes facility inputs and outputs for manufacturing 1 metric tonne of float glass and includes inbound transport of packaging.

The glass manufacturing process begins when raw materials, including sand, soda ash, limestone, dolomite and other minor ingredients, arrive at a Vitro Glass manufacturing facility. As materials are batched and fed into the furnace, they react to form a ribbon of liquid glass. The glass ribbon flows through the furnace into a float bath canal where the material begins to harden atop a bath of liquid tin. Stretch machines, located at the hot end of the float bath, alter the thickness and width of the glass as it moves toward the exit of the furnace. Cooling to about 866 K (1,100 degrees F), the glass is lifted out of the liquid tin and on to conveyor rolls, then fed into an annealing lehr. The lehr cools the glass at a controlled rate to achieve proper stresses for easy and accurate cutting. As the glass exits the lehr, it is cooled to room temperature by open air fans and inspected for flaws prior to cutting.

Flat Glass Production Process
1.9 Environment and Health during Manufacturing

Vitro Glass was the first U.S. glass manufacturer to have its products recognized by the Cradle to Cradle Certified™ Products Program and has maintained that certification ever since. To meet the Cradle to Cradle Certified Product Standard, Vitro Glass has undergone a thorough audit of the materials used in the formulation and production of its glass products, the processes used to manufacture them and the company’s commitment to a Global Code of Ethics. The certification was awarded based on the following five criteria: Material Health, Material Reutilization, Renewable Energy & Carbon Management, Water Stewardship and Social Fairness.

Pre-Consumer Recycling

Vitro Glass equips its glass-making plants with extensive systems to recover and store discarded (or scrap) glass known as cullet, a valuable feedstock that reduces procurement of virgin materials and the amount of energy consumed during the glass-melting process. Greater than 99 percent of the unused glass Vitro Glass manufactures is reutilized in production.
Packaging
Vitro Glass ships many of its glass products on reusable steel racks, which has reduced the amount of disposal packaging that accompanies them by 65 percent.

Water Conservation
Vitro Glass’s Wichita Falls, Texas plant was cited as a national model for water reclamation and recycling due to a $1.9 million project that diverts treated non-potable wastewater from the city’s wastewater treatment facility to Vitro Glass’s seven glass-cooling towers. The project, which was implemented during extreme drought conditions in 2014 and 2015, has reduced potable water consumption at the glass plant by more than 50 million gallons per year since 2014. (Source: Water Environment & Reuse Foundation, Final Report, Feb. 2017).

1.10 Product Processing/Installation
Vitro Architectural Glass should be installed according to industry standards and according to all applicable building codes in the given jurisdiction.

1.11 Packaging
Glass products are packaged on reusable steel racks and stretch-wrapped for delivery. Vitro Glass requests that customers return steel racks for reuse and encourages proper disposal/recycling of stretch wrap in accordance with local guidelines.

1.12 Condition of Use
Vitro Glass products are intended primarily for interior and exterior applications for commercial and residential building projects. They are typically processed into coated, heat-treated or laminated glass products and/or assembled into multi-pane IGUs specified by architects, glazing contractors and other building professionals for finished buildings. Flat glass products also may be used for a limited range of industrial applications, including solar power collection and others.

1.13 Environment of Health during Use
The system boundaries for the analysis encompass a “cradle-to-gate” scope. Environmental impacts of product in use phase are excluded from this declaration, per NSF GANA Product Category Rule (PCR) for Flat Glass - UNCP 3711.
1.14 Extraordinary Effects

To meet the Cradle to Cradle Certified Product Standard, Vitro Glass has undergone a thorough audit of the materials used in the formulation and production of its glass products, the processes used to manufacture them and the company’s commitment to a Global Code of Ethics. The certification was awarded based on the following five criteria: Material Health, Material Reutilization, Renewable Energy & Carbon Management, Water Stewardship and Social Fairness.

1.15 Re-use Phase

Vitro Glass products offer multiple options for reuse and repurposing after deconstruction, including use as an aggregate in concrete and asphalt applications. When finely ground, recycled float glass also can be used as a partial replacement for cement in concrete.

Broken glass (cullet) also is a valuable feedstock in the production of glass, as it greatly reduces demand for virgin materials. The use of cullet also reduces the melting temperature for batch materials, which further diminishes energy consumption.

Glass is considered a technical nutrient and is heavily recycled. The Glass Association of North America (GANA) has produced an informational bulletin titled “Recyclability of Architectural Glass Products” (DD 04-0114). Vitro Glass has several managers and technical personnel serving as active members and in leadership roles for GANA.

1.16 Disposal

Glass is not regarded as a hazardous material, so it may be disposed via typical, non-hazardous waste stream classifications and disposable routes; nevertheless, Vitro Glass encourages recycling of all glass products due to their ease of reuse and reuse versatility.

1.17 Further Information

For further information about Vitro Architectural Glass products, visit VitroGlazings.com.
2. LCA: Calculation Rules

2.1 Declared Unit

The declared unit being evaluated for flat glass, as specified by the GANA PCR for Flat Glass, is 1 metric tonne of glass, maintained for a 30-year period.

2.2 System Boundary

The system boundaries for the analysis encompass a “cradle-to-gate” scope (i.e., raw materials extraction and processing, inbound transport of materials and glass production). As is typical for LCA studies, impacts associated with the construction of capital equipment (such as production equipment in the manufacturing stage) and with human labor and employee commutes are not included within system boundaries. Use and end-of-life stages are excluded as well, as mandated by the PCR.

2.3 Assumptions

Due to limitations in data availability, many assumptions were made in allocating important manufacturing inputs and outputs including electricity, process materials and natural gas consumption between flat and processed glass products. The allocation approaches taken may therefore overestimate the environmental burden for uncoated glass production, as many of these inputs and outputs were allocated entirely to uncoated glass production.

2.4 Cut-off Criteria

No cut-off criteria had to be applied within this study. The system boundary was defined based on relevance to the goal of the study. For the processes within the system boundary, all available energy and material flow data have been included in the model. In cases where no matching Life Cycle Inventories (LCI) are available to represent a flow, proxy data have been applied based on conservative assumptions regarding environmental impacts.

2.5 Background Data

Regional and national averages for fuel inputs, electricity grid mixes, materials, transportation and disposal methods were obtained from the GaBi 2017 database. Documentation for all GaBi datasets can be found at www.gabi-software.com/support/gabi/gabi-6-lci-documentation/.
2.6 Data Quality

A variety of tests and checks were performed throughout the project to ensure the high quality of the completed LCA. Checks included an extensive review of the LCA model, as well as the background data used.

Data included first-hand company manufacturing data in combination with consistent background LCI information from the GaBi 2017 databases.

2.7 Period Under Review

The data are representative of Vitro Glass’s float glass production data for the year 2015.

2.8 Allocation

Where manufacturing inputs, such as electricity use, were not sub-metered, they were allocated by mass, area, or by expert judgment.

2.9 Comparability

A comparison or an evaluation of EPD results is only possible if all results to be compared were created using the same background data and according to the same guidelines, including EN 15804 (CEN, 2013) and the PCR. Additionally, the building context and product-specific performance characteristics should be taken into account.
3. LCA: Results

3.1 Results

LCA results are presented per the declared unit (1 metric tonne of float glass). Note that, at this point, the reported impact categories represent impact potentials, i.e., they are approximations of environmental impacts that could occur if the emissions would (a) follow the underlying impact pathway and (b) meet certain conditions in the receiving environment while doing so. Life Cycle Impact Assessment (LCIA) results are therefore relative expressions only and do not predict actual impacts, the exceeding of thresholds, safety margins or risks.

Table 2: Emissions LCI results for float glass, per declared unit (1 metric tonne)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FLOW</th>
<th>UNIT</th>
<th>UNCOATED: RAW MATERIALS</th>
<th>UNCOATED: PRODUCTION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions to air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>kg</td>
<td>-</td>
<td>1.11E+00</td>
<td>1.11E+00</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>kg</td>
<td>6.28E-01</td>
<td>7.85E+00</td>
<td>8.47E+00</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>kg</td>
<td>3.29E+02</td>
<td>9.55E+02</td>
<td>1.28E+03</td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>kg</td>
<td>6.99E-01</td>
<td>2.32E+00</td>
<td>3.02E+00</td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>kg</td>
<td>1.05E-02</td>
<td>7.66E-03</td>
<td>1.82E-02</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>kg</td>
<td>1.89E-01</td>
<td>5.95E-01</td>
<td>7.84E-01</td>
<td></td>
</tr>
<tr>
<td>NMVOCs</td>
<td>kg</td>
<td>7.45E-02</td>
<td>2.01E-01</td>
<td>2.76E-01</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>kg</td>
<td>5.61E-05</td>
<td>4.10E-04</td>
<td>4.66E-04</td>
<td></td>
</tr>
<tr>
<td>PM (total)</td>
<td>kg</td>
<td>5.02E+00</td>
<td>2.33E+00</td>
<td>7.35E+00</td>
<td></td>
</tr>
<tr>
<td>Water consumption</td>
<td>m³</td>
<td>1.13E+03</td>
<td>1.98E+03</td>
<td>3.12E+03</td>
<td></td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>kg</td>
<td>4.98E-04</td>
<td>5.08E-04</td>
<td>1.01E-03</td>
<td></td>
</tr>
<tr>
<td>NO³⁻</td>
<td>kg</td>
<td>9.72E-03</td>
<td>1.86E-02</td>
<td>2.83E-02</td>
<td></td>
</tr>
<tr>
<td>Dioxin</td>
<td>kg</td>
<td>2.13E-18</td>
<td>1.28E-17</td>
<td>1.49E-17</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>kg</td>
<td>1.78E-12</td>
<td>1.08E-05</td>
<td>1.08E-05</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>kg</td>
<td>1.18E-04</td>
<td>3.87E-04</td>
<td>5.06E-04</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>kg</td>
<td>7.00E-07</td>
<td>2.11E-06</td>
<td>2.80E-06</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>kg</td>
<td>4.26E-05</td>
<td>1.21E-04</td>
<td>1.64E-04</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>kg</td>
<td>7.78E-03</td>
<td>3.02E-02</td>
<td>3.80E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Energy usage LCI results for float glass, per declared unit (1 metric tonne)

<table>
<thead>
<tr>
<th>FLOW</th>
<th>UNIT</th>
<th>UNCOATED: RAW MATERIALS</th>
<th>UNCOATED: PRODUCTION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE</td>
<td>MJ</td>
<td>2.27E+02</td>
<td>4.14E+02</td>
<td>6.41E+02</td>
</tr>
<tr>
<td>Hydro</td>
<td>MJ</td>
<td>6.15E+01</td>
<td>7.92E+01</td>
<td>1.41E+02</td>
</tr>
<tr>
<td>Solar</td>
<td>MJ</td>
<td>8.83E+01</td>
<td>1.09E+02</td>
<td>1.97E+02</td>
</tr>
<tr>
<td>Wind</td>
<td>MJ</td>
<td>6.80E+01</td>
<td>1.72E+02</td>
<td>2.40E+02</td>
</tr>
<tr>
<td>Biomass</td>
<td>MJ</td>
<td>-</td>
<td>1.56E+00</td>
<td>1.56E+00</td>
</tr>
<tr>
<td>PERM</td>
<td>MJ</td>
<td>-</td>
<td>5.42E+01</td>
<td>5.42E+01</td>
</tr>
<tr>
<td>PERT</td>
<td>MJ</td>
<td>2.27E+02</td>
<td>4.68E+02</td>
<td>6.95E+02</td>
</tr>
<tr>
<td>PENRE</td>
<td>MJ</td>
<td>4.82E+03</td>
<td>1.48E+04</td>
<td>1.96E+04</td>
</tr>
<tr>
<td>Fossil fuel</td>
<td>MJ</td>
<td>4.49E+03</td>
<td>1.41E+04</td>
<td>1.86E+04</td>
</tr>
<tr>
<td>Nuclear</td>
<td>MJ</td>
<td>3.31E+02</td>
<td>6.54E+02</td>
<td>9.85E+02</td>
</tr>
<tr>
<td>PENRM</td>
<td>MJ</td>
<td>-</td>
<td>4.89E+01</td>
<td>4.89E+01</td>
</tr>
<tr>
<td>PENRT</td>
<td>MJ</td>
<td>4.87E+03</td>
<td>1.48E+04</td>
<td>1.96E+04</td>
</tr>
<tr>
<td>SM</td>
<td>MJ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RSF</td>
<td>MJ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NRSF</td>
<td>MJ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: Wastes and outputs LCI results for uncoated glass, per declared unit (1 metric tonne)

<table>
<thead>
<tr>
<th>FLOW</th>
<th>UNIT</th>
<th>UNCOATED: RAW MATERIALS</th>
<th>UNCOATED: PRODUCTION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>3.82E-06</td>
<td>5.46E-06</td>
<td>9.28E-06</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>1.98E+01</td>
<td>1.19E+01</td>
<td>3.17E+01</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>1.30E-01</td>
<td>2.56E-01</td>
<td>3.87E-01</td>
</tr>
<tr>
<td>Components for re-use</td>
<td>kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>kg</td>
<td>-</td>
<td>1.18E+01</td>
<td>1.18E+01</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exported energy</td>
<td>MJ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5: LCIA results for float glass products per declared unit (1 metric tonne)

<table>
<thead>
<tr>
<th>IMPACT CATEGORY</th>
<th>UNIT</th>
<th>UNCOATED: RAW MATERIALS</th>
<th>UNCOATED: PRODUCTION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CML 2001 (January 2016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWP</td>
<td>[kg CO₂ eq.]</td>
<td>3.52E+02</td>
<td>1.02E+03</td>
<td>1.37E+03</td>
</tr>
<tr>
<td>ODP</td>
<td>[kg CFC-11 eq.]</td>
<td>2.78E-08</td>
<td>7.57E-08</td>
<td>1.03E-07</td>
</tr>
<tr>
<td>AP</td>
<td>[kg SO₂ eq.]</td>
<td>8.30E-01</td>
<td>5.82E+00</td>
<td>6.65E+00</td>
</tr>
<tr>
<td>EP</td>
<td>[kg (PO₄)³⁻ eq.]</td>
<td>1.04E-01</td>
<td>1.08E+00</td>
<td>1.18E+00</td>
</tr>
<tr>
<td>POCP</td>
<td>[kg ethene eq.]</td>
<td>4.86E-02</td>
<td>3.62E-01</td>
<td>4.11E-01</td>
</tr>
<tr>
<td>ADPe</td>
<td>[kg Sb eq.]</td>
<td>3.04E-03</td>
<td>3.80E-04</td>
<td>3.42E-03</td>
</tr>
<tr>
<td>ADPf</td>
<td>[MJ]</td>
<td>4.54E+03</td>
<td>1.41E+04</td>
<td>1.87E+04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACI 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWP</td>
<td>[kg CO₂ eq.]</td>
<td>3.50E+02</td>
<td>1.02E+03</td>
<td>1.37E+03</td>
</tr>
<tr>
<td>ODP</td>
<td>[kg CFC-11 eq.]</td>
<td>2.96E-08</td>
<td>8.06E-08</td>
<td>1.10E-07</td>
</tr>
<tr>
<td>AP</td>
<td>[kg SO₂ eq.]</td>
<td>9.09E-01</td>
<td>7.11E+00</td>
<td>8.02E+00</td>
</tr>
<tr>
<td>EP</td>
<td>[kg N eq.]</td>
<td>5.01E-02</td>
<td>4.11E-01</td>
<td>4.61E-01</td>
</tr>
<tr>
<td>POCP</td>
<td>[kg O₃ eq.]</td>
<td>1.66E+01</td>
<td>1.95E+02</td>
<td>2.12E+02</td>
</tr>
<tr>
<td>ADPe</td>
<td>[kg Fe eq., per ReCiPe 1.08]</td>
<td>6.23E+00</td>
<td>6.09E+00</td>
<td>1.23E+01</td>
</tr>
<tr>
<td>ADPf</td>
<td>[MJ]</td>
<td>5.79E+02</td>
<td>1.91E+03</td>
<td>2.49E+03</td>
</tr>
</tbody>
</table>

4. LCA: Interpretation

The analysis results represent the cradle-to-gate environmental performance of both uncoated and processed glass products. For a better understanding of the results and impact drivers for the production of uncoated glass, the environmental performance is further broken down in Figure 1 (pg. 18), according to the following criteria:

- **Composition materials** — Upstream impacts associated with extraction and pre-processing of materials used in glass composition, including silica sand, dolomite, pigments, etc.
- **Process materials** — Upstream impacts associated with extraction and pre-processing of process materials like oxygen, hydrogen, nitrogen, tin bath, etc.
- **Electricity** — Impacts associated with generating electricity in relevant manufacturing facility regions
- **Natural gas** — Impacts associated with natural gas production for use in the furnace
- **Inbound transport** — Ship, rail and truck transport of raw materials to the manufacturing facilities
- **Direct emissions** — Emissions reported by facilities
- **Miscellaneous** — Impacts associated with manufacturing waste, packaging materials, water usage and onsite transport
Direct-reported emissions drive many impact categories, including global warming potential, acidification potential, eutrophication potential and smog formation potential. This is due to direct emissions of carbon dioxide, sulfur oxides, nitrogen oxides and non-methane VOCs. Global warming potential also has significant contribution from CO₂ emissions associated with natural soda production, electricity consumption (particularly at the Wichita Falls and Carlisle facilities), and natural gas production. Ozone depletion potential is driven primarily by electricity consumption, specifically from the nuclear-heavy Carlisle electricity grid. Though process materials represent a less-significant portion of overall impacts, they do account for a non-negligible amount of global warming potential and ozone depletion potential impacts. This is primarily attributed to the use of gaseous oxygen as a process material.
5. Additional Environmental Information

Vitro Architectural Glass conserves natural resources through several initiatives aligned to its Sustainability Model. Aiming to create a positive influence in the economic, social and environmental aspects within a framework of responsible corporate management, Vitro Glass will continue to develop and maintain processes to ensure the company’s presence enhances the communities in which it operates.

The sustainability and potential health impacts of materials can be disclosed in a number of ways. Multiple programs have been, and continue to be, developed that outline the data collection and reporting methodologies for disclosure. Some of these programs include, but are not limited to:

- Cradle to Cradle Certified Product Standard (C2C)
- GreenScreen® for Safer Chemicals (GS)
- Pharos Chemical & Material Library & Building Product Library (BPL)
- HPD Collaborative’s (HPDC) Health Product Declaration (HPD)
- International Living Future Institute’s (ILFI) Declare
- Global Harmonized System (GHS) for Safety Data Sheets (SDS)

Vitro Glass utilizes Cradle to Cradle Certification in conjunction with Safety Data Sheets (SDS) and Living Building Challenge’s Red List as the most comprehensive methods of disclosing the sustainability and material health impacts of its products. Vitro Glass will continue to monitor the programs listed above, as well as new initiatives.

Vitro Glass publicly available data, industry-accepted values and information are provided in the documents below:

- Cradle to Cradle Certification and Material Health Certificate
- Technical Document 143 – Material Ingredient Disclosure
- VitroGlazings.com
- Vitro Glass Education Center
- PPG Corporate Sustainability Report
- Vitro Corporate Sustainability Report

Additional information is available at VitroGlazings.com or by calling 1-855-VTRO-GLS (877-6457).
6. References

ASTM C 1036: Standard Specification for Flat Glass

Cradle to Cradle Certified™ Product Standard administered by the Cradle to Cradle Products Innovation Institute: c2ccertified.org

Cradle to Cradle Certified™ Product Standard administered by the Cradle to Cradle Products Innovation Institute: c2ccertified.org and STD Certificate_ Standard: http://www.c2ccertified.org/resources/detail/material-health-certificate-standard

EN 572: Glass in Building. Basic soda lime silicate glass products. Float glass.

ISO 9001: Quality Management System

Malaysia – MS 1135: Specification for Float Glass and Polished Plate

Vitro Architectural Glass: VitroGlazings.com

Vitro Glass Education Center: GlassEd.vitroglazings.com

7. Contact Information

7.1 Study Commissioner

Vitro Architectural Glass
1-855-VTRO-GLS (887-6457)

7.2 LCA Practitioner

Sphera Solutions, Inc.
170 Milk St., 3rd Floor
Boston, MA 02109
+1 617-247-4477
www.sphera.com