Environmental Product Declaration # **CROSSLAM CLT** EPD for Cross Laminated Timber produced by Structurlam in Okanagan Falls, BC # ASTM Certified Environmental Product Declaration | Program Operator General Program | ASTM International 100 Barr Harbor Drive PO Box C700 West Conshohocken, PA, 19428-2959 USA www.astm.org ASTM Programs Operator for Product Consequence (PCP) and Equipment of PCP | | | | | | | | |---|---|--|--|--|--|--|--|--| | Instructions and Version Number | ASTM Program Operator for Product Category Rules (PCR) and Environmental Product Declarations (EPDs) - General Program Instructions, version: 6.0 | | | | | | | | | Declaration Owner | Structurlam Mass Timber Corporation 2176 Government Street Penticton, BC, Canada V2A 8B5 www.structurlam.com STRUCTURLAM MASS TIMBER CORPORATION Intelligence In Wood | | | | | | | | | Declaration Number | EPD124 | | | | | | | | | Declared Product | Cross Laminated Timber (CLT); Brand name: CROSSLAMCLT | | | | | | | | | Declared Unit | 1 m ³ of CLT produced at Structurlam's facility in Okanagen Falls | | | | | | | | | Reference PCR and Version
Number | ISO 21930:2017 Sustainability in Building Construction — Environmental Declaration of Building Products. [12] UL Environment: Product Category Rules for Building-Related Products and Services Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report, v3.2 [17] Part B: Structural and Architectural Wood Products EPD Requirements, v1.0 [18] | | | | | | | | | Description of Product's intended application and use | Crosslam CLT is an engineered wood product with high structural strength and stability. It can be used as building material for any floor, wall, roof, or core construction. | | | | | | | | | Markets of Applicability | Construction Sector, Mass timber design | | | | | | | | | Date of Issue | January 13, 2020 | | | | | | | | | Period of Validity | January 12, 2025 | | | | | | | | | EPD Type | Product-specific EPD | | | | | | | | | EPD Scope | Cradle to Gate | | | | | | | | | Year of reported manufacturer primary data | 2018 | | | | | | | | | LCA Software | SimaPro v8.5 [15] | | | | | | | | | LCI Databases | USLCI [14], Ecoinvent 3.5 [19], Datasmart [13], Athena [4] | | | | | | | | | LCIA Methodology | TRACI 2.1 [6] | | | | | | | | | The sub-category PCR review was conducted by: | Dr. Thomas Gloria (chair) Industrial Ecology Consultants Dr. Indro Ganguly University of Washington University of Georgia | | | | | | | | # **LCA and EPD Developer** This life cycle assessment was conducted in accordance with ISO 14044 and the reference PCR by: #### **Athena Sustainable Materials Institute** 119 Ross Ave. #100 Ottawa, ON K1Y 0N6 613-729-9996 www.athenasmi.org 28- James Salazar This declaration was independently verified in accordance with ISO 14025:2006. The UL Environment "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report," v3.2 (December 2018), in conformance with ISO 21930:2017 and EN 15804 + A1:2013 [8], serves as the core PCR, with additional considerations from the USGBC/UL Environment Part A Enhancement (2017). ☐ INTERNAL x EXTERNAL #### **Independent Verifier** This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by: Timothy S. Brooke ASTM International #### Limitations · Environmental declarations from different programs (ISO 14025) may not be comparable. deligs Bealer - Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building. - This PCR allows EPD comparability only when the same functional requirements between products are ensured and the requirements of ISO 21930:2017 §5.5 are met. It should be noted that different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared. # COMPANY AND PRODUCT DESCRIPTION # Structurlam Mass Timber Corporation Structurlam Mass Timber Corporation is a manufacturer of engineered wood products. The company's main products are cross laminated timber (CLT) and glued laminated timber (glulam). Structurlam provides in addition services related to mass timber design, engineering, 3D modeling, and production machining, to integrate building designed and the prefabrication of building modules from CLT and glulam. The company is located in Penticton, British Columbia. Their production facility is close by in Okanagan Falls, British Columbia. # Crosslam CLT CLT is an engineered wood product consisting of several alternating layers of kiln-dry dimensional lumber glued together. Panels typically consist of three, five, seven or nine layers. CLT has a high strength to weight ratio and shows advantages for structural, fire, thermal and acoustic performance. [7] Structurlam merchandises CLT under the brand name 'Crosslam CLT'. Crosslam CLT has high structural strength and stability. It can be used as building material for any floor, wall, roof, or core construction. The main product components of Crosslam CLT are dimensional softwood lumber (99.5%) and various resins (0.5%). The softwood lumber used for Crosslam CLT production is derived from sustainable managed forests in Canada (See below 'Treatment of biogenic carbon and sustainable forest management certification'). If required, FSC and SFI Chain of Custody Certification are available from Structurlam. CLT is part of the Supplement to the National Building Code of Canada (NBC). CLT was approved for the 2016 Supplement to the CSA-O86 [16]. The adopted package includes: 1) CLT as a structural member; 2) CLT connections; and 3) CLT as a lateral load resisting system. For code acceptance, all CLT products must be manufactured to the standards of ANSI/APA PRG 320-2012 [2]. CrossLam CLT is certified to meet the requirements of the Standard for Performance Rated CLT ANSI/APA PRG 320 [2] and the APA Product Report PR-L314 [3]. These standards outline the requirements and test methods for qualification and quality assurance for CLT and are the same across North America. # METHODOLOGICAL FRAMEWORK # Type of EPD and Life Cycle Stages The underlying LCA [5] investigates the CLT product system from cradle to gate. This comprises the production stage including the information modules 'A1 Extraction and upstream production', 'A2 Transport to factory' and 'A3 Manufacturing' (Figure 1). | | Building Life Cycle Information Modules | | | | | | | | | | | | | | | |------------------------------------|---|---------------|-------------------|--------------|-----------|-------------|--------|-------------|---------------|------------------------|-----------------------|-----------------------------|---|------------------|----------| | Pr | oducti | | Constr
Sta | uction | Use stage | | | | | End-of-life stage | | | | | | | Extraction and upstream production | Transport to factory | Manufacturing | Transport to site | Installation | Use | Maintenance | Repair | Replacement | Refurbishment | Operational Energy Use | Operational Water Use | De-Construction/ Demolition | Transport to waste processing or disposal | Waste processing | Disposal | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | С3 | C4 | | Х | Х | Х | MND **Figure 1** Life Cycle Stages and Information Modules per ISO 21930:2017. (MND: module not declared) # System Boundaries and Product Flow Diagram The product system described in Figure 2 includes the following information modules and unit processes: # A1 Extraction and upstream production A1 includes the cradle-to-gate production of softwood lumber and resins that are used in CLT manufacture. The upstream resource extraction includes removal of raw materials and processing, processing of secondary material input (e.g., recycling processes) after crossing the system boundary of the previous product system. A1 also includes reforestation processes that include nursery operations (which include fertilizer, irrigation, energy for greenhouses if applicable etc.), site preparation, as well as planting, fertilization, thinning and other management operations. # **A2 Transport to facility** Average or specific transportation of raw materials (including secondary materials and fuels) from extraction site or source to manufacturing site (including any recovered materials from source to be recycled in the process). #### A3 Manufacturing Manufacturing of the CLT product, including packaging (lumber wrap). Figure 2: Cradle-to-Gate CLT Product System #### **Declared Unit** Table 1 shows the declared unit and additional product information. **Table 1:** Declared Unit and Product Information | Declared Unit | | | | | | | | | |--|-------|-------------|--|--|--|--|--|--| | The declared unit is "the production of one cubic meter (1 m3) of CLT produced at Structurlam's facility in Okanagan Falls". | | | | | | | | | | Property | Unit | Value | | | | | | | | Mass | kg | ± 481 (SPF) | | | | | | | | Thickness to achieve declared unit | mm | 87 - 315 | | | | | | | | Density | kg/m³ | ± 481 (SPF) | | | | | | | | Moisture Content | % | 12% (± 3%) | | | | | | | | Product Composition | | | | | | | | | | Softwood Lumber | % | 99.5 | | | | | | | | Resins | % | 0.5 | | | | | | | #### Allocation Methods Allocation is the method used to partition the environmental load of a process when several products or functions share the same process. The Structurlam Facility at Okanagan Falls produces CLT and glulam (main products) as well as industrial CLT mats (co-products). In accordance with UL Part B PCR 2019 [18], the environmental load among these products is allocated according to its mass. Furthermore, the manufacturing process does produce wood waste that is transferred for free to downstream users. No environmental burden has been allocated to these wastes. A detailed explanation of the allocation methodology of upstream lumber production is provided in the lumber LCA project report. # Cut-off Criteria The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows: - All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded. - A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs. - All flows known to contribute a significant impact or to uncertainty are included. - The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory. No material or energy input or output was knowingly excluded from the system boundary. #### **Data Sources** Primary and secondary data sources, as well as the respective data quality assessment are documented in the underlying LCA project report in accordance with UL PCR 2019. This EPD estimates the impacts of forest management by the weighted industry average EPD of Canadian softwood lumber. Third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to any of the required impact categories identified by the applicable PCR. Treatment of Biogenic Carbon and Sustainable Forest Management Certification Biogenic carbon emissions and removals are reported in accordance with ISO 21930 7.2.7. and 7.2.12. Detailed information is provided in the underlying LCA in Section 2.5. ISO 21930 requires a demonstration of forest sustainability to characterize carbon removals with a factor of -1 kg CO2e/kg CO2. ISO 21930 Section 7.2.11 Note 2 states the following regarding demonstrating forest sustainability: "Other evidences such as national reporting under the United Nations Framework Convention on Climate Change (UNFCCC) can be used to identify forests with stable or increasing forest carbon stocks." Canada's UNFCCC annual report Table 6-1 provides annual net GHG Flux Estimates for different land use categories. This reporting indicates non-decreasing forest carbon stocks and thus the source forests meet the conditions for characterization of removals with a factor of -1 kg CO2e/kg CO2. Table 3 provides additional inventory parameters related to biogenic carbon removal and emissions. # ENVIRONMENTAL PARAMETERS DERIVED FROM LCA Table 2 presents the LCIA and LCI parameter results for the declared unit of 1 m³ of CLT. The impact categories and characterization factors (CF) for the LCIA were derived from the U.S. EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts -TRACI 2.1 [6]. The total primary energy consumption is tabulated from the LCI results based on the Cumulative Energy Demand Method published by ecoinvent [19]. Lower heating value of primary energy carriers is used to calculate the primary energy values reported in the study. Other inventory parameters concerning material use, waste, water use and biogenic carbon were drawn from the LCI results. We followed the ACLCA's Guidance to Calculating non-LCIA Inventory Metrics in accordance with ISO 21930:2017 [1]. SimaPro v8.5 [15] was used to organize and accumulate the LCI data, and to calculate the LCIA results. Table 2: LCIA Results Summary for Cradle-to-Gate production of 1 m3 of CLT | Core Mandatory Impact Indicator | | | Total | A1 | A2 | А3 | |---|----------------------|---------------|----------|------------|----------|----------| | Global warming potential – TRACI 2.1 | GWP _{TRACI} | kg CO₂e | 124.02 | 61.61 | 40.80 | 21.61 | | Global warming potential – w/ biogenic CO ₂ | GWP_{BIO} | kg CO₂e | 124.02 | (1,211.74) | 40.80 | 1,294.96 | | Depletion potential of the stratospheric ozone layer | ODP | kg CFC11e | 2.63E-06 | 1.59E-06 | 1.72E-09 | 1.04E-06 | | Acidification potential of soil and water sources | AP | kg SO₂e | 1.33 | 0.59 | 0.54 | 0.20 | | Eutrophication potential | EP | kg Ne | 0.20 | 0.11 | 0.03 | 0.06 | | Formation potential of tropospheric ozone | SFP | kg O₃e | 29.66 | 11.69 | 13.81 | 4.15 | | Abiotic depletion potential (ADPfossil) for fossil resources; | ADPf | MJ, NCV | 1,873.86 | 974.87 | 584.75 | 314.24 | | Fossil fuel depletion | FFD | MJ
Surplus | 262.39 | 135.00 | 86.42 | 40.98 | | Use of Primary Resources | | | | | | | | Renewable primary energy carrier used as energy | RPRE | MJ, NCV | 2,794.70 | 1,618.77 | - | 1,175.92 | | Renewable primary energy carrier used as material | RPRM | MJ, NCV | 9,973.08 | 9,973.08 | - | - | | Non-renewable primary energy carrier used as energy | NRPRE | MJ, NCV | 2,169.54 | 1,199.08 | 619.85 | 350.62 | | Non-renewable primary energy carrier used as material | NRPRM | MJ, NCV | - | - | - | - | | Secondary Material, Secondary Fuel and Re | covered Ener | gy | | | | | | Secondary material | SM | kg | - | - | - | - | | Renewable secondary fuel | RSF | MJ, NCV | - | - | - | - | | Non-renewable secondary fuel | NRSF | MJ, NCV | - | - | - | - | | Recovered energy | RE | MJ, NCV | - | - | - | - | | Mandatory Inventory Parameters | | | | | | | | Consumption of freshwater resources | FW | m³ | 0.62 | 0.55 | - | 0.13 | | Indicators Describing Waste | | | | | | | | Hazardous waste disposed | HWD | kg | - | - | - | - | | Non-hazardous waste disposed | NHWD | kg | 6.21 | - | - | 6.21 | | High-level radioactive waste, conditioned, to final repository | HLRW | m³ | 3.89E-07 | 3.83E-07 | 0.00E+00 | 6.08E-09 | | Intermediate- and low-level radioactive waste, conditioned, to final repository | ILLRW | m³ | 3.88E-07 | 3.23E-07 | 0.00E+00 | 6.42E-08 | | Components for re-use | CRU | kg | - | - | - | - | | Materials for recycling | MR | kg | - | - | - | - | | Materials for energy recovery | MER | kg | - | - | - | - | | Recovered energy exported from the product system | EE | MJ, NCV | - | - | - | - | To ensure transparency Table 3 shows additional inventory parameters related to biogenic carbon removal and emissions. The carbon dioxide flows are presented unallocated to consider co-products leaving the product system in information module A3. Even though, the system boundary of this study included only the information modules A1-A3, in accordance with ISO 21930, BCEK was reported in A5 and BCEP of the main product in C3/C4. The net carbon emission across the entire life cycle is zero. It is assumed that all carbon removed from the atmosphere is eventually emitted to the atmosphere as CO2. Total GWP_{BIO} includes biogenic carbon emissions and removals from the information modules A1-A3, A5 and C3/C4, leading to a net zero contribution of biogenic carbon to GWP_{BIO}. Therefore, in Table 2, results for total GWP_{TRACI} and total GWP_{BIO} are equal. Table 3: Biogenic carbon inventory parameters for CLT | Additional Inventory F | Parameter | 's | Total | A1 | A2 | А3 | A5 | C3/C4 | |--|-----------|--------------------|----------|----------|----|-------|----|--------| | Biogenic Carbon
Removal from Product | BCRP | kg CO ₂ | (969.71) | (969.71) | - | - | - | - | | Biogenic Carbon
Emission from Product | ВСЕР | kg CO ₂ | 874.83 | - | - | - | - | 874.83 | | Biogenic Carbon
Removal from
Packaging | BCRK | kg CO₂ | - | - | - | - | - | - | | Biogenic Carbon
Emission from
Packaging | ВСЕК | kg CO ₂ | - | - | - | - | - | - | | Biogenic Carbon Emission from Combustion of Waste from Ren. Sources Used in Production | BCEW | kg CO ₂ | 94.88 | - | - | 94.88 | - | - | | Net biogenic carbon emission kg CO ₂ | | | 0.00 | | | | | | # INTERPRETATION AND LIMITATIONS # Comparability Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building. Comparison of the environmental performance of construction works and construction products using EPD information shall be based on the product's use and impacts at the construction works level. In general, EPDs may not be used for comparability purposes when not considered in a construction works context. Given this PCR ensures products meet the same functional requirements, comparability is permissible provided the information given for such comparison is transparent and the limitations of comparability explained. Full conformance with the PCR for 'Structural and Architectural Wood Products' allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category Part B PCR, and use equivalent scenarios with respect to construction works. However, variations and deviations are possible. # Forest Management While this EPD does not address landscape level forest management impacts, potential impacts may be addressed through requirements put forth in regional regulatory frameworks, ASTM 7612-15 guidance, and ISO 21930 Section 7.2.11 including notes therein. These documents, combined with this EPD, may provide a more complete picture of environmental and social performance of wood products. While this EPD does not address all forest management activities that influence forest carbon, wildlife habitat, endangered species, and soil and water quality, these potential impacts may be addressed through other mechanisms such as regulatory frameworks and/or forest certification systems which, combined with this EPD, will give a more complete picture of environmental and social performance of wood products. # Scope of the EPD EPDs can complement but cannot replace tools and certifications that are designed to address environmental impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, etc. #### Data National or regional life cycle averaged data for raw material extraction does not distinguish between extraction practices at specific sites and can greatly affect the resulting impacts. # Accuracy of Results EPDs regularly rely on estimations of impacts; the level of accuracy in estimation of effect differs for any particular product line and reported impact when averaging data. # ADDITIONAL ENVIRONMENTAL INFORMATION # **EXTRAORDINARY EFFECTS** #### Fire E119 (S101) Fire resistance Rating and E84 (S102) Flame Spread tests for Structurlam's products are available on https://www.structurlam.com/resources/testing/. #### Water CLT may be exposed to rain during the construction stage. While the water impact must be minimized, no major negative effects have been documented if the mass timber product returns below 19% MC within a 2 months time span. If it stays saturated longer than this time span, the risk of fungal decay increases significantly. #### **Mechanical Destruction** The design of mass timber building ensures that wood components do not fail during a seismic event. Steel connections between wood elements are the yielding point and can be replaced after destruction. #### **ENVIRONMENTAL ACTIVITIES AND CERTIFICATIONS** On request, CLT can be produced with FSC or SFI certified wood. Structurlam maintains the chain of custody record for those products. #### **FURTHER INFORMATION** Further information is available on request and on www.structurlam.com. # REFERENCES - American Center for Life Cycle Assessment (2019) ACLCA Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017 - 2. ANSI/APA (2018) PRG 320-2018: Standard for Performance-Rated Cross-Laminated Timber - 3. APA (2019) Product Report PR-L314: Structurlam Crosslam CLT, revised May 23, 2019 - 4. Athena Sustainable Materials Institute (2019) A Cradle-to-Gate Life Cycle Assessment of Canadian Surfaced Dry Softwood Lumber. Prepared for the Canadian Wood Council. - 5. Athena Sustainable Materials Institute (2019) A Cradle-to-Gate Life Cycle Assessment of Cross-Laminated Timber and Glued-laminated Timber Manufactured by Structurlam, v1.0, - 6. Bare, J. (2012) Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) Version 2.1. - 7. Canadian Wood Council https://cwc.ca/how-to-build-with-wood/wood-products/mass-timber/cross-laminated-timber-clt/ - 8. EN 15804:2012+A1:2013 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products - 9. International Organization for Standardization (2006) ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures - 10. International Organization for Standardization (2006) International Standard ISO 14040:2006 Environmental management Life cycle assessment Principles and framework - 11. International Organization for Standardization (2006) International Standard ISO 14044:2006, Environmental management Life cycle assessment Requirements and guidelines - 12. International Organization for Standardization (2017) International Standard ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services. - 13. LTS (2019) DataSmart: http://ltsexperts.com/services/software/datasmart-life-cycle-inventory/ - 14. National Renewable Energy Laboratory (2019) U.S. Life Cycle Inventory Database http://www.nrel.gov/lci/ - 15. PRé Consultants BV (2018) SimaPro v8.5 LCA Software - 16. The National Building Code of Canada (2014) CSA O86 Engineering design in wood 2016 Supplement - 17. UL. (2018). Product Category Rules for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements, v3.2. - 18. UL. (2019). Product Category Rule Guidance for Building-Related Products and Services, Part B: Structural and Architectural Wood Products, EPD Requirements UL 10010-9 v.1.0. 19. Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016) The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230.